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1.0 INTRODUCTION

In multichannel identification problems the outputs of
multiple channels (or sensors) are available, and it is desired to
identify the parameters of an analytical model to represent the
phenomena being observed via the channel outputs. Similarly, in
multichannel detection problems the outputs of multiple channels
are available, and it is desired to determine the presence (or
absence) of a desired signal component in the channel data. In
the combined problem of multichannel identification and detection
a model is estimated for the phenomena being observed via the
channel outputs, and the identified model is used to facilitate
the detection of a desired signal in the channel output data.
Multichannel identification and detection is thus referred to also
as model-based multichannel detection. In all of these problems
the channel data is available simultaneously over many channels of
the same type, or over many distinct channels (each channel
corresponding to a different sensor type).

This report is a summary of the work carried out in Phase I

of this program,. Specifically, the development of state space
algorithms for model-based multichannel detection in the context
of surveillance radar system applications is addressed. In

surveillance radar systems (radar arrays) the channels correspond
to separate antenna apertures (or elements of a single aperture
array) . The desired signal may or may not be present in the
channel output data at any given time. The data in each channel
generally includes noise (broadband interference) as well as
"clutter" (narrowband interference), with low signal-to-clutter
ratio and, possibly, low signal-to-noise ratio also. Model-based
detection methods must discriminate between the condition of

target embedded in clutter and noise, and the condition of clutter
and noise only.



Figure 1-1 illustrates a radar array system consisting of
multiple subarrays or array elements. The output of each subarray

(or each individual array element) is a complex-valued, scalar,
digital sequence, denoted as {x{n)}]. The collection of the J scalar

sequences is arranged into a J-dimensional vector, {X(n)}, which is
input to a multichannel processor (not shown in the figure).

Channel No. 1
{x4(n)}
D > Analog A/D > Pre- N
Receiver | . Converter Processor |

Channel No. J

- {x,(n)}
D > Analog A/D Pre-
Receiver - Converter - Processor o

Figure 1-1, - Radar array with J subarrays or individual elements.

In Phase I the multivariate (multiple input, multiple output)
state space model class was adopted to represent the multichannel
radar data, and new system identification techniques were applied
to estimate the model parameters. The modeling of the complex-
valued pre-processed radar signals for multichannel detection
using the state space model class is one of the contributions of
this work. State space models have been used in the context of
target tracking (where the detected radar signal is'processed
further to estimate a trajectory) and for the determination of
weights in antenna array sidelobe canceling and related problems,
but not for multichannel detection. Model-based detecticon has

been carried out using the more-restricted time series models
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(Michels, 1991; Metford and Haykin, 1985), which are included
within the class of state space models and can be represented as
such,

The state space identification algorithm on which the
methodology developed in this program is based has several unique
features., Foremost among these, the algorithm operates on output
data directly to generate estimates of the parameters of a state
space model (without computing output correlation matrices). This
feature of the algorithm results in reduced dynamic range
requirements in comparison with state space algorithms that
operate on correlation matrices. The algorithm belongs to the
class referred to as subspace methods because the fundamental
operation of the algorithm 1s to decompose the vector space
sp&nned by the channel output data into signal anrnd noise
subspaces. Implementation of this fundamental operation 1is
carried out wusing the QR decomposition and the singular value
decomposition (SVD), which are stable numerical techniques. This
identification algorithm is new; it is scheduled to appear in the
open literature late this year (Van Overschee and De Moor, 1993).

An important distinction in the context of radar system
applications is that the vector random processes which represent
the channel data are complex-valued processes in most cases. Most
time series techniques and models have been formulated for complex
as well as real processes. The same, however, cannot be said
about state-space techniques; state-space methods and results
available in the literature have been defined almost exclusively
for the case of real-valued processes, including the algorithm of
Van Overschee and De Moor (1993). 1In Phase I the Van Overschee-De
Moor algorithm was extended to the case of complex-valued
processes, which is the formulation presented in this report.



A computer simulation was generated as part of this program
to validate the methcdology and the algorithms, and to carry out
simulation-based analyses. This software was exercised with
simulated multichannel data generated at RL, and the modeling and
identification results compare favorably with the results obtained
at RL using auto-regressive models.

In summary, the analytical and simulation results obtained in
this program indicate that the SSC algorithm and methodology for
model-based multichannel detection has the potential to result in
significant advances for radar system applications.

1.1 Notation

Vector variables are denoted by underscored lower-case
letters (including Greek letters). Matrices are denoted by upper-
case letters (including Greek letters). Some scalars (such as the
order of the state variable model) are denoted also by upper-case

letters. Vector spaces are denoted by upper-case script letters,
such as V. The expectation operator is denoted as E[*); superscript

T and H are used to denote the matrix and vector transpose and the
Hermitian transpose operators, respectively; and an asterisk (%)
denotes the complex conjugate operator. Iy denotes an M-
dimensional identity matrix, Oy, denotes an NxJ null (zero)
matrix, Oy denotes an M-dimensional (square) null matrix, and Qy
denotes an M-dimensional zero vector. |A| denotes the determinant
of matrix A; A denotes the inverse of matrix A; A! denotes the
pseudoinverse of A; range(A) denotes the range (column space) of
A; rank(A) denotes the rank of A; A(ij) and a; are both used to
denote the (i,j)th element of matrix A; and dim(7) denotes the
dimension of vector space V. A caret (*) over a variable denotes
an estimate of the variable, a bar (-) over a variable is used to
represent the mean of the variable, and 1ln(a) denotes the natural



logarithm of a. The symbol . denotes "is orthogonal to;" N
denotes intersection of two vector spaces; & denotes the direct
sum of vector spaces; V denotes "for all;" and € denotes "is an

element of."

Where possible, the symbols used herein to represent
variables match the symbols used by Michels (1991) to facilitate
enhancing the software available at Rome Laboratory (RL) with the
techniques developed in this program. This philosophy forces the
use of non-standard symbols to represent the parameters of a state
variable model. Of course, notational convention should not be a
major issue provided all symbols are defined appropriately.
However, it is important to mention this point in order to avoid
possible confusion on the part of the reader.

1.2 Rapaoxt _Qverviaw

An introduction to the model-hased multichannel detection
problem is presented in Section 2.0. This section includes also
the definition of the state space model class and several related
concepts, including the backward model associated with a forward
model, and the innovations representation for a random process.
The parameter identification algorithm is presented in Section
3.0, and the algorithm proof provided differs significantly from
the proof given by Van Overschee and De Myor (1993). In fact, the
algorithm proof given here is simpler and easier to follow, As
mentioned earlier, this algorithm is the backbone of the
Scientific Studies Corpecration (SSC) multichannel detection
approach. Kalman filtering 5f the channel data to generate the
innovations sequence is discussed in Section 4.0. The innovations
sequence is fed to a likelihood ratio detector which generates the
detection decision, as described in Section 5.0. A discussion of
the software generated in the program is presented in Section 6.0,



along with several simulation results. Section 7.0 includes the
main conclusions and recommendations borne out of this Phase I.
Appendix A presents a methodology for generating the state space
representation of three conventional time series models (moving-
average, auto-regressive, and auto-regressive moving-average).
Appendix B presents the quotient singular value decomposition
(QSVD) for matrix pairs, as required in Section 3.0.




2.0 MODEL-BASED MULTICHANNEL DETECTION

The model-based approach to multichannel detection involves
processing the channel data tu identify the parameters of a model
for the multichannel system, and determination of a detection
decision utilizing the identified parameters to filter the channel
data. Model parameters can be identified on-line, as the.channel
data is received and processed. Alternatively, the model
parameters can be identified off-line for various conditions and
stored in the processor memory to be accessed in real-time as
required. .

There are two general classes of linear parametric models for
vector random processes: time series models and state space
models. Time series models include moving-average (MA) models,
auto-regressive (AR) models, and auto-regressive moving-average
(ARMA) models. State space models are more general than time
series models; in fact, MA, AR, and ARMA models can“*be represented
by state space models (Appendix A). In the state space
literature, the determination of the model parameters based on
output data (and, sometimes, input data also) is referred to as a
stochastic identification or a stochastic realization problem.

Time series models have been applied to the multichannel
detection problem, and the performance results obtained provide
encouragement for further research (see, for example, Michels,
1991, and the references therein). The results obtained by
Michels (1991) assume that the multichannel output process can be
modeled as a vector AR process. Given the generality of state-
space models and the wealth of results available in the state-
space literature, the state space model class was selected in
Phase I to represent the multichannel signals in the model-based
multichannel deteccion problem for radar systems.




In the case of time series models, two types of model
parameter estimation algorithms have been established in the
literature: (a) algorithms which operate on channel output
correlation matrices, such as the extended Levinson algorithm
(Anderson and Moore, 1979), and (b) algorithms which operate on
the channel output data directly (without the need to compute
channel output correlation matrices), such as the Levinson-
Wiggins-Robinson algorithm (Wiggins and Robinson, 1965) and the
Strand-Nuttall algorithm (Strand, 1977; Npttall, 1976) .

In the case of state~space models, most of the existing
algorithms operate on channel output correlation matrices, such as
the stochastic realization approach developed by Akaike (1974,
1975). This limitation is due, in.-a large part, to the fact that
the structure of state space models is more general than the
structure of -time series models, and the increase in generality
hés presented a significant challenge to the development of
algorithms that operate on channel output data directly. Very
recently, however, Van Overschee and De Moor (1993) have defined a
state space stochastic realization algorithm which avoids the
computation of channel output correlation matrices. Furthermore,
this algorithm can be implemented wusing robust numerical
techniques. The Van Overschee-De Moor algorithm was adopted in
Phase I to solve the parameter identification problem.

2.1 Multichannel Detection

Detection problems in the context of radar systems can be
postulated as hypothesis testing problems, where a choice has to
be made among two or more hypotheses. The detection problems
addressed in this report involve the following two hypotheses:



Hy: Desired signal is absent
Hy: Desired signal is present

Hy is referred to as the null hypothesis, and Hy is the alterpative
hypothesdis. The model-~-based approach to the multichannel
detection problem is couched on the assumption that the vector
random process at the ocutput of the channels can be represented as
the output of a linear system (filter) under each of the two
hypotheses, and that a unique parametric model corresponds to each
hypothesis. Furthermore, the two parametric models (one for each
of the two hypotheses) must be sufficiently different to allow
selection of the correct hypothesis by the evaluation of measures
that are sensitive to those differences.

A particular measure that has produced robust experimental
results in the model-based detection context (Metford and Haykin,
1985) is the log-likelihood ratio (LLR) test. This test is the
result of solving the hypothesis testing problem using the Neyman-
Pearson criterion. The LLR test in the context of model-based
detection is calculated using the innovations sequence at the
output of each of the two linear filters. This presents practical
and implementation advantages.

Figure 2-1 1illustrates the architecture of an on-line
innovations-based multichannel detector. In the case of a radar
array system, each of J radar receiver channels collects the
electromagnetic energy arrivinc at its aperture, and processes it
to generate a discrete-time random sequence, denoted as {xj(n)},
which contains the desired information. The J random sequences
{xi(n)} are represented in vector form as {X(n)}. Michels (1991) has

formulated the binary detection problem for multichannel systems.
Specifically, the null hypothesis, Hy, corresponds to the case of



clutter and noise present in the observation process {X(n)}, and the
alternative hypothesis, Hy, corresponds to the case of signal,
clutter, and noise present in the observation process {X(n)}. That
is, the detection decision must be made between the following two
models,

(2-1a) Hy: X(n) = g(n) + w(n) n2nNg
(2=1b) Hy: X(n) = 8(n) + ¢(n) + w(n) n2ng

where Ny denotes the initial observation time, {g(n)} denotes the
clutter process, ({W(n)} denotes all the array channel noise
processes, and {§(n)} denctes the desired signal (target) process.
In the model-based approach pursued herein, a distinct state
variable model is associated with each of the two hypotheses, and
a Kalman filter is designed for each model. Each Kalman filter

processes the observation sequence {X(n)} to generate a vector
innovations sequence: {§U1|H0» denotes the innovations sequence at

the output of the null hypothesis filter, and {§U1|H1H denotes the
innovations sequence at the output of the alternative hypothesis
filter. These innovations sequences are used in a likelihood

ratio test with a pre-stored threshold to carry out the detection
decision.

As indicated in the detection configuration of Figure 2-1,
the two filters can be determined in real-time by processing the
observation sequence for a prescribed time interval. This
approach provides the most adaptability, but may present a large
computational burden for some applications. It also presents
conceptual challenges, such as real-time determination of model
order for each of the two filters. Alternatively, the filter
design can be carried out off-line for each of the two hypotheses,

and the resulting filter design implemented in the real-time
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configuration. This alternative approach is less robust to
changes in the operational environment, but requires a simpler
processor archiﬁecture, which is important in many real-time
applications. Careful design of the filters off-line using
adequate simulated and real data can lead to acceptable
performance. Also, many pairs of fixed filters may be designed to
cover distinct operational conditions. The filter for the
alternative hypothesis will be of higher order than the filter for
the null hypothesis because the observation process for the

alternative hypothesis has more information (the signal
component) .
Innovations
Null Sequence
1 Hypothesis
: Filter {e(n |Ho)}
{x(n)} Model Likelihood Detection
1 Parameter [——#={ Ratio ——p1 Docision =
Identification Calculation Calculation
Innovations Threshold
Alternative Sequence

1 Hypothesis
Filter {e(n [}

Figure 2-1. Innovations-based multichannel detector with on-line
parameter identification.

Michels (1991) has developed a likelihood ratio calculation

and detection decision model which are compatible with the

formulation adopted herein. Both of these capabilities are

11



available at RL, and, where appropriate, the methodology presented
in this report is compatible with these capabilities.

2.2 State Spaca Modal

The class of multiple-input, multiple-output state variable
models can represent effectively the channel output process for
radar applications. Consider a discrete-time, stationary,
complex-valued, zero-mean, Gaussian random process {X(n)} defined as
the output of the following state space model representation for
the system giving rise to the observed process:

(2-2a) y(n+1) = Fy(n) + Gu(n) n2ne
(2=2b)  X(n) = HMy(n) + DMw(n) n2ng
(2-2¢) Ely(no)] = Qu

(2~2d) Ely(no)x™(ne)] = Po

Here N =Ny denotes the initial time (which can be adopted as 0
since the system is stationary). Also, ¥(n) is the N-dimensional
state of the system with Y¥(Ng) a Gaussian random vector; W(n) is the
J-dimensional, zero-mean, stationary, Gaussian, white input noise
process; and W(n) is the J-dimensional, =zero-mean, stationary,
Gaussian, white measurement noise process. The output (or
measurement) process {X(n)} is also a J-dimensional vector process.
Matrix F is the NxN system matrix, G is NxJ input noise
distribution matrix, H" is the JxN output distribution matrix, OM
is the JxJ output noise distribution matrix, and Py, is the
correlation matrix of the initial state. All these matrices are
time-invariant. Matrix Py is Hermitian and positive definite.

12



System (2-2) is assumed to be asymptotically stable, which
means that all the eigenvalues of matrix F are inside the unit

circle. Also, system (2-2) is assumed to be reachable and
observable, which implies that the dimension N of the state vector
(also the order of the system) is minimal (Anderson and Moore,
1979) . That is, there is no system of lesser order which has
identical input/output behaviour. The output distribution
matrices are defined with the conjugate operator in order to have
notation consistent with that of the single-output system case,
where both H and D become vectors, and nominally vectors are

defined as column vectors.

The input noise process correlation matrix is given as (all
matrices defined hereafter have appropriate dimensions) '

(2-3a) Elu(ku"(k)] = Ru(0) = Q K2 ng

(2-3b) E[ﬂk)g”(k-n)j = Ryu(n) = [0] k2n, and n#0
and the output noise process correlation matrix is given as
(2-4a) Elw(k)w™ (k)] = Ruw(0) = C K2 ng

(2-4b) Elw(k)wH(k-n)] = Raw(n) = [0] k2n, and N0

Notice that matrices Q and C are Hermitian (that is, Q"=Q, and
CH=C). Matrix Q is at least a positive semidefinite matrix since

it is an auto-correlation matrix (all the eigenvalues of a
positive semidefinite matrix are non-negative), and matrix C is
assumed to be positive definite (this can be relaxed to positive
semi~definite, but positive definiteness is more realistic since
in the radar problem W(n) represents channel noise and other such

noise processes which are independent from channel to channel).
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In the most general form for this model the input and output
noise processes are correlated, with a cross=-correlation matrix
defined as

(2-5a) Efu(k)n(K)] = Ruw(0) = S K2 ne

(2-5b) El(K)wH(k-n)] = Ruw(n) = [0] k2 Ny and N#0

In general, matrix S is not Hermitian. Both the input and output
noise processes are uncorrelated with the present and past values
of the state process, and this is expressed in terms ot cross-
correlation matrices as

(2-6a) Ely(k)u(k-n)] = Ryy(n) = (O] k2n, and N20
(2-6b) Ely(k)wH(k-n)] = Ryw(n) = [0] k2n, and N20
The correlation matrix of the state is defined as

(2-7) E[xkn)x“(n)] = Ryy(n) = P(n) k=2n, and n20

It follows from (2-2a) and the above definitions that the state

correlation matrix satisfies the following recurrence relation,
(2-8) P(n+1) = FP(n)FH + GQGH N2 No

In general, matrix P(n) is Hermitian and positive definite. Since

system (2-2) is stationary and asymptotically stable, and since
matrix Q ‘is positive definit-~, then the following steady-state
(large N) value exists for the recursion (2-8):

(2-9) P(n+1) = P(n) = P
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Under steady-state conditions Equation (2-8) becomes a Lyapunov
equation for the steady-state correlation matrix, denoted as P:

(2-10) P = FPFH + GQGH

The conditions for steady-state also insure that the solution to
Equation (2-10) exists, is unique (for the selected state space
basis), and is positive definite (Anderson and Moore, 1979).
Matrix P is unique for a givén state space basis. However, if the

basis of the input noise and/or the basis of the state are changed
by a similarity and/or an input transformation, then a different
state correlation matrix results from Equation (2-10).

The correlation matrix sequence of the output process {X(n)} is
defined as

(2-11a)  E[X(K)X"(k-n)] = Ryx(n) = An VK and n20

(2-11b)  Rux(-n) = Rix(n) v n

For a system of the form (2-2), the correlation matrix Ry(n) can be

factorized as follows,
(2-12a)  An = Rx(n) = HF™'T n>0
(2-12b)  An = Ry(n) = TF"")PH = THFH™'H n<0

where F™! denotes F raised to the (n-1)th power and I' denotes the

following cross-correlation matrix

(2-13) I = E[y(n)x™(n-1)] = Ryx(1) = FP(n)H + GSD Vn>0
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The correlation matrix sequence factorization in Equation (2-12)
is the key to most correlation-based stochastic realization
algorithms. The zero-lag (N=0) output correlation matrix is

(2-14) Rxx(0) = H'P(n)H + DHCD = A,

Matrix Ryxx(0) is Hermitian and at least positive semidefinite. 1In
steady-~state, P replaces P(n) in Equations (2-13) and (2-14).

As can be inferred from the above relations, the system
parameters {F,G,H,D,Q,C,S,P, I} completely define the second-order
statistics {the correlation matrix sequence {Rx(n)}) of the output
process, and it is said that system (2-2) realizes the output
correlation matrix sequence. Conversely, the second-order
statistics of the output process provide sufficient information to
identify the system parameters, although not uniquely. Since the
output process has zero mean and is Gaussian-distributed, the
second-order statistics define the process completely.

From the system identification (stochastic realization) point
of view, the problem addressed herein can be stated as follows:
given the output data sequence {X(n)} of system (2-2), estimate a
set of system parameters {F,G,H,D,Q,C,S,P, T} which generates the
same output correlation matrix sequence as system (2-2).,
Furthermore, the identified parameter set must correspond to a
system realization of minimal order (with state vector ¥ of minimal

dimension) .

It is well known (Anderson and Moore, 1979) that there can
exist an infinity of systems (2-2) with the same output
correlation matrix sequence. The set of all systems that have the
same output correlation matrix sequence is an equivalence class,

and any two systems belonging to the set are said to be
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correlation eguivalent (Candy, 1976). For example, the output
correlation matrix sequence remains invariant to a similarity
transformation applied to the state vector. Similarly, the output
correlation matrix sequence remains invariant also to a non-
singular transformation applied to the input noise and/or to the
output noise. As shown by Candy (1976), the equivalence class of
correlation equivalent systems is defined including other
operations besides a change of basis.

Based on these comments, the solution to the system
identification problem is not unique. It is also true that most
of the possible system parameter solutions do not possess
desirable properties. There is, however, a solution which has
several features of importance. This solution is referred to as

the innovations representation for system (2-2), and is discussed
in Section 2.3.

In general, the system matrix parameters resulting from the

identification algorithm will be represented in a different basis,
and should be denoted with a different symbol (say, Fy instead of

F, etc.); nevertheless, the same symbol will be used in this

report in order to simplify notation.

Several definitions and notation associated with the input

/output behaviour of system (2-2) are important. Consider first
the L-texrm (fipnite) controllability matyix of system (2-2), (_:

this matrix is defined as an NxJL partitioned matrix of the form

(2-15) (¢ =(G FG ... F'G ]

As is well-known, matrix (i has rank N (equal to the system order)

for L2N. The controllability matrix maps the input space onto
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the state space. Analogously, the L=-term observability matrix of

system (2-2) is the following JLxN partitioned matrix,

(2-16) o =

L HHAES!

and the rank of matrix Of is equal to N also for L2N. The
observability matrix maps the state space onto the output space.
Classical realization theory for the deterministic case is based
on the fact that a block Hankel matrix made up of the impulse
response matrices (Markov parameters) of a deterministic system
can be represented as the product of the observability and
controllability matrices. That is,

(2=-17) HoL = OC

where H;, is a JLxJL deterministic Hankel matrix with the impulse
response matrix A(i+j-1) as its (ij)th block element (a block Hankel
matrix is a matrix in which the (i,3j)th block element 1is a
function of i+3j). This result follows from the definition of the
impulse response matrix sequence,

(2-18) A(n) = HF™'G nz1
Notice that the factorization of the impulse response matrix
sequence in Equation (2-18) is very similar to the factorization

of the correlation matrix sequence in Equation (2-12).

Agssociated with system (2-2) is a backward time model which
is defined from the system model (2-2). Backward time models play
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a role in the formulation of a large claaa of atachaatid
realization algorithma. The backwagd time model for ayatem (.-<.2)
is defined as a discrete=-time, atationary, complex=valued, zero-
mean, Gaussian random process with a state sSpace icpreasntation of
the form (Faurre, 1976)

(2-19a)  8(n) = Fig(n+1) +y(n)
(2-19b)  %(n) = IMg(n) + y,(n)

where §(n) is the N-dimensional state vector, (n) is the N-
dimensional input noise vector, and ¥,(N) is the J-dimensional

output noise vector. Both noise vectors are uncorrelated in time
(white), have mean equal to zero, and are Gaussian-distributed,
The L-term observability matrix for the backward system (2-19) is
the following JLxN partitioned matrix,

[ o™
rHeH

L

)

-

(2-20) D =

Also of interest is the Hermitian of D with the block columns in

reversed order, That is,

(2~21) B =D'=[f*'r ... Fr 1]

where the dual-point arrow over matrix Tf indicates reversal in
the order of the block columns. Notice that matrix B is like a
controllability matrix for the matrix pair (F,T) in reverse block
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aalumn order. ‘Thuas, matrix A 14 velferred ta hekein an the L=term
reversed dual controllabtitty mavgin,

In the ovontext of artoahaatlia realimation theory, the
significance of the baokward model followa from Kquartion (2-20)
and the Hankel matrix of output corrq;aciaq matricea, aa ahown
next, Define a srtochaatic Hankel mateix M | aa the following

JLxJL block matrix,

A Ay A
A Ay A

A ]
L A}
[ ]

(2-22) M, =

LA A A

where the Dblock elements {(A,) are the elementa of the output

correlation matrix sequence, Equation (2-12). It followa from
Equationa (2-12), (2=16), and (2-22) that

(2-23)  #H, = QI

This equation is fundamental to stochastic realization algorithms,
and allows the application of classical daterministic realization
algorithms to the stochastic realization problem formulated with
output correlation matrices, It also provides insight into the
stochastic realization algorithm presented in Section 3.0, even
though the algorithm does not require computation of the output
C. .relation matrix sequence.

Other important matrices in stochastic realization theory
include the JLxJL "future" and "past" block correlation matrices,
These matrices are the correlation matrices of future and past
output bleock vectors defined as




(2=24) ip = gNinel-1) =

(2~29) Rp @ g(Neline@l-t) = ‘

With theae definitiona, the future and pasat block correlation
matrices are given by the following JLxJL matrices:

Ao Ay '\\-L1
l\‘ Ao (AR l\a,\‘

. ) [ )

(2-26) Ry = Egpel] =

L AL Apgr A

~ -

l\o l\‘ v I\L,‘
i\“ J\o s I\La

(2-27) R = Elxeal] =

M A A

r

where Rg, | and Rp, | are the future and past block correlation

matrices, respectively. Another matrix of interest is the block
cross-correlation matrix between the future and the past, which is
defined as
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AL J\L,‘ Y A‘

A A A -
(2=28)  Rgypy w Elgagfl @ UM e e

] 1 L] +
J [} ' )

L A Amg ot AL

Notice that the block aroaa-correlation matrix Rp pL 18 equal to

the atochastic block Hankel with the block calumns in revaeraa
order, as indicated in FRquation (2-28), For LaN, equations (2-
26) «(2-2%) define the correlation structure of ayatem (2~2), In
fact, the stochastic realization algorithm of Akaike (1974, 197%)
18 based On these block correlation matrices.

2.3 lanavationa _BRapxaasntation

The innovations repreaentation is a very powerful concept in
the theory of linear atochastic systems due to jts simplicity and
ita characteriastics. Several texts and papers discuss this
concept in detail; in particular, Anderson and Moore (1979)
provide a lucid presentation. The discussion herein is adapted

mostly from Anderson and Moore (1979),

The innovations representation for a system (2-2) is a
discrete-time, stationary, complex-valued, system of the rorm

(2-29a) a(n+1) = Fg(n) + Kg(n) n2ng
(2=29b)  x(n) = HAg(n) +g(n) n2n,
(2=-29¢c) g(no) L] %

(2-29d)  E[@(ng)@"(ne)] = IM(ng) = I, = [0)
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(2-29¢)  E[g(n)g"(n)] = N(n) n>ne

(2=298) Mn)mll as n—oe

(2-29q) Ryx(n) = Ryy(n) vn

here g(n) is the N-dimensional state, 2(N) is the J-dimensional

output, and the input process {g(n)} is the innovations proceaa for
system (2-2), ‘That is, {g(n)} is a J-dimensional, zero=-mean, white

Gaussian process with correlation matrix structure given as

(2=30a) Q= Elgke"(k)) = a;,(o) « HATIH = Ag - HHIH k2nRe

(2=30b)  Ele(kigH(k-n)) = (0] k2N, and nw0
The state correlation matrix [Il(n) has a steady-state value because

the system is asymptotically stable (stationary), and the steady-
state value, Il, is obtained as the limiting solution to the

following recursion

(2-31la) n(ﬁn) = FTI(N)FY + [FTI(n)H - T [Ao - HPTI(n)H) [FTI(n)H - IH n2ng
(2-31b) T(ne) = Iy, = {0)

Matrix K in Equation (2-29a) is given as

(2=-32a)  Ka[['-FIH] Q' = [ - FITH] [Ao - HTTIH]!

(2-32b) K =GSD Q' = GSD [A, - HITH]!

where the second relation follows from the definitions of I in

Equaticn (2-13) and of Q in Equation (2-30a). 1In the cases where
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the inverse of the correlation matrix Q does not exist, its

pseudoinverse is used instead in Equations (2-31) and (1=32).

Matrices F, H, Ag, and ' are as defined for syutem (2-2),

That is, system (2-29) is related to system (2-2),. In fact,
system (2-29) as defined above is the steady-state innovations
representation for system (2-2). This representation has the

following important features.

(a) First and foremost, the correlation matrix sequence of
{x(n)} is .equal to the correlation matrix sequence of
{¢(n)}, as indicated in Equation (2-299). That is, the
processes {%(n)}] and {X(n)} are correlation equivalent.
This means that the innovations representation is a
valid solution to the system identification problem
defined herein.

(b) Of all the correlation equivalent representations for
a given output correlation sequence, the innovations

representation has the smallest state correlation
matrix, [l (smallest is meant in the sense of positive

definiteness; that is, [l; is smaller than Il if [, -
[y, is a positive definite matrix). This property of
the innovations model is significant because the state

correlation matrix is a measure of the uncertainty in
the state.

(c) The innovations representation is directly related to
the steady-state Kalman filter (in the one-step
predictor formulation) for system (2-2). In fact, the
steady-state Kalman filter for system (2-2) is
available immediately upon definition of the steady-

state innovations representation, and viceversa.
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(d)

(@)

(2-33)

(2-34)

Specifically, matrix K of Equations (2-29a) and (2-
31) is the steady-state Kalman gain of the optimal
one-step predictor for system (2-2). This is true
provided that the eigenvalues of F-KH" are staple.
Thus, the innovations model is defined as above for
all progesses of the form (2-2), but the steady-state
Kalman filter is defined only if F-KH" is stable.

The process {g(n)}] in Equations (2-29) and (2-30) is
correlation equivalent to the innovations sequence of
system (2-2), which is the reason for referring to
system (2-29) as the "innovations representation" for
system (2-2).

The innovations model (2-29) is causally invertible,

This means that the present and past of the process
{(n)} can be constructed from the present and past

values of the output process {%(n)}. The converse

statement is true also; that 1is, any causally
invertible model is an innovations representation for
some system, Causal invertibility of system (2-29)
can be demonstrated easily. From Equation (2-29b),

g(n) = - HAg(n) + x(n)

Substituting this expression for g(N) into Equation (2-

29a) results in
g(n+1) = [F - KHMg(n) + Kx(n)

These relations demonstrate the causal invertibility
of the innovations model (the input and output
variables have traded places).
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(f) Matrix F-KH" in the inverted innovations model is a
stable matrix. This follows from the fact that the
matrix pair (F,H) is observable, and implies that the
Kalman filter for system (2-2) is stable also,

(g) The transfer function of the innovations model (2-29)
is minimum phase. This is related to the fact that
the innovations model is correlation equivalent to
system (2-2), and second-order moment information (the
output correlation matrix sequence) does not contain
any phase information.

(h) The innovations representation for a system of the
form‘(2-2) is unique. Given that the innovations
representation has the same output covariance sequence
as system (2-2), the fact that it is unique eliminates
searching for other representations for system (2-2)
with the properties listed herein.

(1) The innovations model (2-29) can be computed from the
output correlation matrix sequence of system (2-2).
This fact simplifies the parameter identification

problem because the set of matrix parameters that must
be estimated is reduced to just five: (F, H, I, I,

Ao} (given these parameter matrices, the innovations
covariance, f, and the Kalman gain, K, are obtained

using Equations (2-30a) and (2-32a), respectively).
All the features listed above are of relevance to the

identification approach presented in Section 3.0 because the
selected parameter identification algorithm generates the
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innovations representation for the given output correlation matrix
sequence, following feature (i).

The backward model has an associated backward innovations
model which is defined by F, ', and the backward Kalman gain.
Most of the features (a)-(i) that describe the forward innovations
model are valid also for the backward innovations model, with a
notable exception of feature (b), which needs to be replaced by
the following statement: For each valid correlation equivalent
representation for a given output correlation sequence, the state
correlation matrix 1is smaller than the inverse of the state

correlation matrix for the backward innovations model. More
specifically, let Il, denote the state correlation matrix for the

backward innovations model in steady-state conditions, and let X

denote the state correlation matrix for any valid correlation
equivalent representation of an output correlation sequence.

Then, H; - Z is a positive definite matrix. This result provides

an upper bound for the state correlation matrix of a correlation
equivalent representation, and can be combined with the lower
bound established by property (b) of the forward innovations model
to give

(2-35) M SIsIL

As before, the inequality between two matrices is intended in the
sense of positive semi-definiteness of the matrix difference.
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3.0 NMULTICHRANNEL SYSTEM IDENTIFICATION

Identification of the model parameter matrices {F,H, [, II, A} is

carried out using the algorithm of Van Overschee and De Moor
(1993), extended to the case of complex-valued data. The Van
Overschee-De Moor algorithm is based on the predictor space
concept of Akaike (1974; 1975), the correlation equivalence
results obtained by Faurre (1976), and the balanced stochastic
realization approach of Arun and Kung (1990). The algorithm
approach is presented herein from a viewpoint which is different
from, and simpler than, the presentation given by Van Overschee
and De Moor (1993).

3.1 Qutput Data-Based Algoxithm

In comparison with alternative stochastic realization
techniques, the Van Overschee-De Moor algorithm adopted herein has
several advantages for multichannel detection applications, as
listed next.

¢ Reduced dynamic range with respect to algorithms which
require generation of the output correlation matrix
sequence (correlation matrices are estimated as sums of
products of the data sequence elements, which increases
the dynamic range). As such, the algorithm can be
viewed as a "square-root" algorithm.

* Identifies the parameters for a model in the state-space
class, which is more general than the time series class.

* Belongs to a class of algorithms referred to as
"subspace methods." Subspace methods involve the

decomposition of the space spanned by the ocutput process
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into two orthogonal subspaces: one subspace is the space
spanned by the "desired component,"™ and the other
subspace is spanned by the "noise component." The MUSIC
algorithm (Schmidt, 1979; 1981), for example, also
belongs to the class of subspace methods.

* An approximately balanced (in the stochastic sense)
state space realization is generated, thus providing a
built-in and robust mechanism for model order selection.

* Identifies the innovations representation of the system,
and generates the Kalman gain directly, without having

to solve a nonlinear discrete matrix Riccati equation.

* Approach differs from others in that the states of a.
Kalman filter for the given sequence are identified
first, and then the model parameters are estimated via
least-squares.

* Implementation of the algorithm involves the QR
decomposition and the quotient SVD (QSVD; also known as
the generalized SVD), which are stable numerical
methods. Furthermore, the QSVD is applied to matrices

of small dimensions.

An algorithm for implementing the QSVD is given in Appendix B for
the specific conditions presented in this section.

Consider the channel output sequence {X(n)}. For simplicity,
let the initial time ne=0. This can be done without loss of

generality because the system is stationary. Now define a block
Hankel matrix Xm__1 with output sequence vectors assigned as block

elements according to the rule Xy (i) = X(i+-2); that is,
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T x(0) x(1) x(2) -+ X(M-1) ]
(1) x@2) x@8) --- xM)
Xor1 =| %(2) x%(3) x(4) --- x(M+1)

L X(L-1) X(L) x(L+1) .- X(L+M-2) |

Here the first subscript denotes the time index of the first
element of the first row, and the second subscript denotes the
time index of the first element of the last row. Matrix Xg,., has
JL rows and M columns, with M>>JL, and JL>N (recall that N is
the system order and J is the number of channels). The block row

dimension, L, must be selected so that L2N+1. Similarly, define
another JLxMblock Hankel matrix X . with output sequence vectors

assigned as block elements according to the rule XleL_1(i,j)=x(i+j-2+L);

that is,
[ x(L) x(L+1) x(L+2) - x(L+M-1) )
x(L+1) x(L+2) x(L+3) .- X(L+M)
(3-2) XioLy = | X(L+2) X(L+3) x(L+#4) .. x(L+M+1)

L x(2L-1) x(2L) x(2L+1) ... x(2L+M-2) |

Matrices Xg ., and X, . represent the "past" and the "future',
respectively, of the output process. Also let X~ denote the
vector space spanned by the past of the process {x(n)}, and X*

denote the vector space spanned by the future of the process.
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The algorithm is based on the decomposition of the process
future (as represented by matrix XL2L4) into two orthogonal
subspaces (herein orthogonality is invoked under the standard
unitary inner product for complex vector spaces, with identity
metric). In such a decomposition, one subspace is the space
spanned by the process past, X (as represented by matrix Xo¢4)'
and the second subspace is the space spanned by the noise process.
Let W denote the space spanned by the noise process {w(n)}. Then,
the desired decomposition of X' is as follows:

(3-3) X=X & W

where @& denotes the direct sum, and X~ 1 W (since the present

state and the present measurement noise are uncorrelated). In
matrix notation, the desired decomposition of XL2b1 is expressed as

(3-4) Xt = Xmp + Xeip

where the JLxM matrix Xg,p is the projection of the row space of
XL2b1 (the future) onto the row space of XQL4 (the past), and the
JLxM matrix Xg p is the projection of the row space of X 5. onto
the complement of the row space of X, . Akaike (1974; 1975) has
demonstrated that since the order of the state space model is N,

the projection of the future onto the past:is an N-dimensional
subspace of the M-dimensional space to which the rows of xL2b1

belong. Thus, the rank of matrix XHW is equal to the dimension of

the subspace spanned by the projection of the future onto the
past. Furthermore, the structure of this subspace (and of its

matrix representation) determines the characteristics of the state
space model (such as model order). © Analogously, matrix XFLP

determines the characteristics of the noise subspace,
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The decomposition (3-4) can be carried out using a matrix
operator referred to as a projector (Pease, 1965). Let S, and §,

denote two orthogonal subspaces of § such that 5, @ 5,=S5. A
projector of S onto S, is a matrix P, such that

(3-5a) Py, =V, | VY e
(3-5b) Py, =0 VY, €S,
Projectors can be defined also as operating on row vectors,
instead of on column vectors. The property which characterizes
projectors is idempotency (that is, P is a projector if and only
if P?aP),

Let 7V denote the M-dimensional subspace defined by the L rows
of X 5.1 (recall that L<<M), and let P_ denote the MxM projector
of v onto the .subspace X~. It follows that

(3-6) X2t aP- = Xpp

Thus, availability of the projector P_ allows the decomposition of
the future data matrix because Xg,p can be determined from

Equations (3-4) and (3-6). Projector P_ is determined from matrix
XO'L.1 aS

t H oyt
(3-7) P. = XoL1XoL1 = X’g_w (Xop1Xowt) ot

This projector will decompose the future data matrix into the
desired components. However, Equation (3-7) imposes a large
computational burden, and furthermore, it effectively involves the
calculation of the output correlation matrix sequence and of the
inverse of a large matrix‘ with correlation matrix sequence
elements as its block elements, Fortunately, the QR decomposition
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can be applied to determine the subspace decomposition (3=4) and
also to determine the prcjector P_., if required. The QR

decomposition is a computationally efficient and numerically
robust approach to address this problem (Dongarra et al., 1979).

Consider now the block Hankel data matrix Xgg... This matrix

is a 2JLxM block column matrix made up of a concatenation of the
past and future Hankel matrices,

X
0,L-1
(3"8) x°.2L‘1 B ([seesaas

XL 2L-1

Now apply the Hermitian operator to a "normalized" matrix Xmm,

anc carry out a QR decomposition on this matrix (the normalization
factor is required to avoid increase in dynamic range and to match
the formulation which is based on the correlation matrix
sequence) . This results in

I pH
Xo2Lt = 1 1 H H
(3-92) o T L Xt Xlaw ) = Q) ieeeeees
™M ™ Om-20L).20L
—_— H
R Rs
o
(3-9b) -%,%—'1 =(Q Q Q[ R
(Y ()

Matrix Q is an MxM unitary matrix, submatrices Q, and Qg are
dimensioned MxJL, and submatrix Qg is dimensioned Mx(M-2JL).

Matrix RM is a 2JLx2JL upper~triangular matrix with rank equal to
the rank of matrix XO.ZL-1' All the submatrices of R are
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dimensioned JLxJL, and submatrices Ry and Rg ate alsv upper-
triangular. Since matrix Q is univary, the following ralationa
are true:

(3-100  0a" = Q,Qf + 0yQ8 + QxQh = |,
(oo, ol Qg |
w [0 [9)

(3=11) o'Q = Q':QA Q':Q. Q’.*Qo =| (0] i ) |=ly
O 10  Iuan

L ofo, aQfie,  Qfia .

Consider now the conjugate transpose of Equation (3-9), after
eliminating Qg since it is multiplied by a zero-valued matrix;

that is,

(3=12) — =

]
e

wwauas | Wl | “eswwueesen ||lecacsans

KoLt ] [ Ra [0 ] Qa

XL aL1

The following two equations are obtained immediately from the
partitioning in Equation (3-12),

X1 H
(3=-13) ' = R,Q
™ ATA
(3ere) Sk RgQ: + RLQH
™

Equation (3-13) is a QR decomposition of Xy, (recall that R, is

lower triangular), and Equation (3-14) is a subspace decomposition
of XL3b1. As shown next, (3-14) is the desired decomposition of
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X aLi+  The projecter P, is determined from Lquationa (3=7) and (3=
13) as

(3-1%) P = QQ}

It also followa that the projector of 7V onto W (the noise
subspace) is

(3-16) Py = QuQH

With Equations (3-11) and (3-1%) it is easy to demonstrate that

(3‘1?) XmL_‘P_ - m [ RBQ:] - xFllP

Similarly, it follows from Equations (3-11) and (3=-16) that

(3-18) X aL.yPw = ™ | Rcoﬁ] = Xgip

This demonstrates that Equation (3-14) is the decomposition of the
future onto the past and onto the noise orthogonal subspaces.

The information of the projection of the future onto the past
i3 contained in matrix RB- Specifically, the rank of RB is equal

to the order of the state space model representation for the
future-to-past interface, and the column space of Rg is equal to
the column space of the observability matrix for the state space
model (Van Overschee and De Moor, 1993).

At this point in the development it is convenient to continue
the decomposition of the Q and R matrices in Equation (3-12) in
order to 1isolate as much as possible the structure of the
orthogonal subspaces. To that end, consider Equation (3-12), and
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carry out a further partitioning of the QR decomposition matrices
as followa (the dimenaions of the matrices on the right-hand-side
of Equation (3-19a) are given in (3-19b) and (3=19c)):

"Ry (0] (0 [0 ] Qf ]

(3-1%a) M..L[.’.‘?‘.L‘.‘.]. o P2 O 0O Qg
w M X{ 2L Ry Ry Rag [0] o

-R41 H‘a R‘a H“-- Q’: ]

JL-1) J 0 J dLe)
JIL-1) [ Ry (0] (0] (0] ]

(3-19b) J Ry Ry [0 (0]

J Ryt Rz Ry [0

M

Je) [ Qff ]
J ol

(3=-19¢) “eaa
J ol

JL-1) | Qf |

From Equations (3-12) and (3-19) it follows that the JLxJL matrices
Rg and Rq are defined with the following partitions:

" Ry Ry ]
(3-20) Rg=| ' %

L Ry Ryp

R ol
(3-21) Rg=| B 10

L R43 R44..
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Refer to the partitioning in Equation (3-19) and define two other
partitioned matrices as

(3‘22) % -[ R“ R‘a R‘a] ‘
(3=-23) . RE = Ry

Matrix Rp is J(L-1)xJ(L+1), and matrix Rg is J(L-1)xJ(L-1). Now carry

out two QSVDs ~n these matrix pairs as detailed in Appendix B.
One QSVD is apy .ed to the matrix pair Rg and Rg to obtain

(3-25) RS = VTV

The second QSVD is carried out on the matrix pair RD and RE' and

results in
(3-26)  RY = U_,S Y,

(3-27) Hg = VL'1TL'1Y:‘.‘-1

In these two QSVDs, matrices Uiy, U, V_4, and V| are unitary, and
matrices Y ., and Y_ are square and non-singular (Appendix B),.
Also, the subscripts (L or L-1) correspond to the term index of an
associated observability matrix defined as in Equation (2-16).
That is, the following two results are true:

* The column space of matrix Rp is the same as the column
space of Or.1. This result follows from two facts:
first, for L-12 N the observability matrix maps the

state space onto the output space; and second, the
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decomposition on Equation (3-19) indicates a

decomposition of the form (3-14) for the block Hankel
matrix an.aL-w which consists of the last L-1 block

rows of Xpg 4 in Equation (3-19).

* The column space of matrix RB is the same as the column
space of 0. As in the preceding argument, this

follows from the mapping property of the observability
matrix and from the decomposition of matrix XL2b1 in

Equation (3-14).

Consider the cases where the matrix pairs (Rpg, Rg) and (Rp, Rg)

form concatenated matrices of full rank (see Appendix B), which
are the most likely cases in practical situations involving random
data. In those cases matrix Si .y is rectangular . :h 2J more rows

than columns, and is zero except possibly along the main diagonal.
The elements along the main diagonal of S|4 are real-valued, with

value bound between unity and zero, and arranged in order of
decreasing magnitude. Matrices 8§, T4, and T are square and
diagonal. The diagonal elements of S| are real~valued, with value
bound between unity and zero, and arranged in order of decreasing
magnitude also. The diagonal elements of both T ., and T, are also
real-valued and with value bound between unity and zero. Howevef,

the diagonal elements of these two matrices are arranged in order-
of decreasing magnitude. In pairs, the diagonal elements of SL4

and T, are referred to as singular value pairs of matrices Rp and
Reg. Likewise, the diagonal elements of S and T_ are the singular
value pairs of matrices Rg and Rg.

The value of the diagonal elements of matrices S|, and S_ are

indicative of model order. In fact, when the data is the output
of a system of order N, only the first N diagonal entries are non-
zero in matrices S| ., and S (model order determination is
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discussed further in Section 3.2). As discussed in Appendix B,
for every zero-valued diagonal entry in matrix S| there is a

corresponding unity-valued diagonal element in matrix T . The same
relationship is true for matrices S_ ., and T ,. Thus, for an N-th
order model the two pairs of §; and T, matrices have a natural

partition along the main diagonal corresponding to the first N
entries. Specifically,

(3-28) S [Sm [01} {SS) [ol}
Sl s? T oy

ze s [“’ 101}3{88.’1 [0] }
UL 8B Lol Oyt

(3-300 T, [141) [01} [T(L” [0] }

) T 0]  Yun
1) 1)
(3-31) Ty = [T‘ [0” [1{_1 . }
o] T 0 Iy

Now define block column partitions in matrices U@y VPV and Yb)to

correspond with the partitions in Equations (3-28)-(3-31). This
results in

I T
(3-33) VL=[VS) sz)] VL-1=[VS1) vf}}
S A R R
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All submatrices with superscript 1 have N columns. Partitioning
of the S, T() U V), and Y() matrices does not provide a
theoretical advantage or an enhanced insight; it does, however,
reduce the computational burden.

The two QSVDs were introduced to extract the structure and
subspace information available in the R matrix (and submatrices)
of the QR decomposition. Substitution of the QSVD results into
the corresponding partitions in Equations (3-12) and (3-19) allows
appreciation of this structure. Carrying this out leads to the
following expressions:

Ql ~ ok
L.2L- H
(3-35) V_1 =[ Rg : Rg]veee = v s oVl
M Qg Qf
B B
H H
Xiot,2011 Q4 H wop| G
(3=36) _‘}-——_ =[Ry Rl = YL-1[ Sty TLaVi ]
" c o

Both of these equations exhibit a subspace decomposition of the
respective block Hankel data matrix, and in each equation the
information ¢f the structure of the two orthogonal subspaces 1is
contained in the partitioned matrix involving the Sp) and TP)
matrices. In Equation (3-36) the partitions in the matrices are
not emphasized because the dimensions of the individual partitions
are not compatible (as they are in Equation (3-35)). Of course,
overall matrix dimensions are compatible.

Given the decompositions in Equations (3-35) and (3-36), it
remains to develop the procedure that relates these decompositions
to the innovations model parameter matrices. This is done using
orthogonal projections in random vector spaces.
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Consider the orthogonal projection of the future block vector
X¢ onto the past bleck vector Xp (recall Equations (2-24) and (2-

25)). This projection is the minimum variance estimate of Xg given
Xp, which is also the conditional mean of Xg given Xp. That is,

(3-37) B = Elxelxe) = Exe ] (Elxpx]) %o

Using Equations (2-26) and (2-28) this can be expressed compactly
in terms of the observability and reversed dual controllability
matrices as

~ pay -1 1
(3~-38) Xp = %.L RP:L. L&p = OB KP:L. L&p

Suppose a minimum variance estimate 1is sought for each one of the
columns of the data block Hankel matrix XL2b1r which represents the

future. Theﬁ, concatenating M such estimate equations into a
single matrix estimate equation leads to

\ X 1
(3-39} XL,2L-1 = QB Rp;L'LXO,L-1 = OLZL

The NxM matrix Z, is very important, and deserves to be defined

directly, as in Equation (3-40) next,
(3-40) Zy = B Koy XYoL

Equation (3-39) states that the minimum variance estimate of the
output (the columns of matrix XL2b1) is a linear function of the

columns of matrix ZL' Recall that the observability matrix maps

the state vector into the output, and that the states of a Kalman

filter are minimum variance estimates of the states of the linear
system for which the filter i1s designed. Thus, the columns of ZL
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are states of a Kalman filter for the system to be identified.
This result 1is instrumental to the algorithm.

Equations (3-39) and (3-40) involve correlation matrices,
which is undesired because of the computaticonal burden associated
with their calculation and also because of the increase in
numerical precision (dynamic range) associated with computations

involving correlation matrices. It is possible to convert these
equations to "square root" form by substituting estimates of the
correlation matrices calculated using channel output data. For

sufficiently large values of M the reversed stochastic Hankel
matrix and the past block correlation matrix are approximated
effectively by the biased correlation matrix estimators using the
channel output data, and it is simple to demonstrate that such

estimates can be represented in terms of the output data block
Hankel matrices. Specifically, for large M,

| ) ) )
(3-41) R L= _hlll- Xo.-1%o.L-1 = RaRa

- . H H
(3-42)  H | = —,\]4‘ XLa1XoL1 = Y(SUIRA = B

where Equations (3-13) and (3-35) have been applied. Equation (3-
42) suggests that the reversed stochastic Hankel matrix can be
factorized, as ir deterministic realization problems (Zeiger and
McEwen, 1974), to obtain the observability and the reversed dual
controllability matrices,

172
(3-43) 0 = Y,8!? = ¥{"(s!")

2, (H
(3-4a) B = S%UlR] = ‘S‘L‘))” (U™ R
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Now the matrix of Kalman filter states, ZL, can be determined as

(using Equations (3-13), (3-40), (3-41), and (3-44)),

H 2 H[ oH
a2 - sl P o 60 O
2

This is a key result of the algorithm.

In order to calculate the system parameter matrices F, I, and
H it is necessary to determine two additional filter state
matrices: ZLM and VVL. Matrix ZLn can be thought of as a "shifted"
version of matrix ZL; in fact, the columns of matrix ZL+1 are
obtained from the columns of matrix ZL via a Kalman filter (or an
innovations model, Equation (2-34)). Determination of matrix ZLH
requires steps identical to those in the derivation of matrix Z.
The main difference is that the matrices involved correspond to
the (L+1)-term observability and reversed dual controllability

matrices. And consequently, the results of the QSVD of matrices
RD and RE are utilized. Repeating the steps in the derivation of

matrix Z, leads to the following result:

oY
-172 u H
3-46)  Z,, = (8T (") v 8T (U)o
QH
3

1
where the underbar denotes that matrix X&) is obtained from matrix

Y(:) by deleting the last block row.

If the procedure to determine matrix ZL is followed departing
from the orthogonal projection of the past block vector Xp onto the
future block vector Xg, then the resulting matrix, denoted as VVU

is a matrix of Kalman filter states for the backward Kalman filter

43




(the Kalman filter for the backward system). The form of this
backward filter states matrix is

(3=47) WL = (S(L”)”z[ S(L”(U'(j))H T(L‘l)(V(L”)H] co e

The main difference between this expression and the expression for
matrix Z,, Equation (3-45), is that Equation (3-47) includes

matrices T  and V| directly.

Given the Kalman states matrices Z,, Z,,,, and W, the system
parameter matrices F, I'’, and H can be determined as least-squares

solutions to linear systems of equations in noise. This is a
result of the relationship with these matrices and the forward and
backward Kalman filter for the channel output sequence {X(n)}. The

procedure is described next.

Since the columns of the matrices Z, and Z,,, are Kalman

filter states, it follows that

(3-48)  Ziy = FZ 42,

where Z, is a matrix of residuals orthogonal to Z_ (Kalman filter

residuals are orthogonal to the state estimates). A least-squares
estimate of F is obtained from Equations (3-45), (3-46), and (3~

48) as

(3-49a) F= z\.ﬂz{ - ZLMZC(ZLZ’C)‘




-1/2 \ H -1/2
(3-49b) F = (S(L”) (X(:)) Y‘J: S(C.: (LL(CL) U(L1 )(St(.”)

Alternative formulas for matrix F can be defined based on several
relationships (observability; controllability; backward model;
etc.) that are valid for the system matrix. Each distinct formula
presents different numerical precision and computational
requirements. This issue defines an important set of trade-offs
for investigation in Phase II.

The output equation for the Kalman filter leads to the
following matrix relation,

(3-50) X = HZ +2,

where matrix X_ is the first block row of matrix X p., and Z, is a
matrix of residuals orthogonal to Z;. From the definition of X
and Equations (3-12) and (3-19),

- Q? -
. QH
2
(3-51) X = (L) ¥(L+1) - X(LeM-1)] = [ Ry Ry Ry (0] ]1----
QH
3
Lo} |
From Egquations (3-45), (3-50), and (3-51) the least-squares

estimate of HH is

(3-52)  H" = X2« x2Z'(2,2)’

-1/2
(3-52)  H" = [ Ry, Ry Ju"(s!")




This is a simple expression and it involves matrices of relatively
low dimensionality. An alternative derivation for Equation (3-
52b) departs from Equation (3-43) and capitalizes on the fact that
matrix H" occupies the first J rows of the observability matrix.

A least-squares estimate for I' is obtained in a manner

analogous to the solution for HH obtained above. This is based on
the fact that FH is the output measurement matrix for the backward

system. Thus, the output equation for the backward Kalman filter
leads to the following matrix relation,

(3-53) Xy = THW +2,

where matrix X . is the last block row of matrix XoL.1+ and Z, is a
matrix of residuals orthogonal to W . From the definition of X,
"and Equations (3-12) and (3-19),

.(a? 7
. QH
2
(3-54) X, = (%L1 XU o xLeM2)] = [Ry Ry [0 [0]]----
q;
L Q.
Then, based on Equations (3-47), (3-53), and (3-54), the least-
squares estimate of r“ is obtained as
H t H H)"!
(3-s5a) M X W = X  WH{wwl)
(3-555)  IMa| Ry J UM (™M)
) [ Ry Ry L ‘O
This expression is analogous to Equation (3-52). Just as in the

case for HH, an alternative derivation of Equation (3-55b) is
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possible based on the fact that matrix [' occupies the last J

columns of the reversed dual centrollability matrix, Equation (3-
44) .

Alternative formulas can be defined also for matrices H and T

based on the various system relationships that involve these
matrices. This also constitutes an important set of trade-offs
for Phase 1II.

Notice that the Q(, matrices do not appear in the final

expressions for the matrix parameters. The QR decomposition is
fundamental to the algorithm, but only the Rb)nmtrices have to be

calculated and stored. This is a very important feature of the
algorithm because one dimension of Q) is very large (M), and the

manipulation of these matrices would involve significant storage
and computational requirements.

Determination of the remaining matrix parameters for the

innovations model (2-29) is described next. Consider first the
steady-state correlation matrix of the innovations model state, II.

This correlation matrix is equal to the correlation matrix of the

Kalman filter state (Anderson and Moore, 1979). Therefore, a
robust estimator for [l is based on the columns of matrix Z,

(3-s6) M =22 ="

It turns out that the backward filter states also lead to the same
result,

(3-57) I, = WW' = s

A system model such that the forward and backward correlation
matrices are both diagonal and equal is said to be in balanced
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coordinates (in the stochastic sense). Balanced coordinates allow
effective model order selection and/or reduction.

The zero-lag output correlation matrix is obtained directly
from the output sequence as

1
(3-58) Ag m -d— (k)X (k)
T ke

(3=59) Ny = M+2L-1

here Ny is the total number of output data vectors (length of the

output sequence) used in the algorithm. The innovations
correlation matrix is obtained from Equation (2-30a),

(3-60) Q = Ag-H'IIH

Finally, the one-step prediction filter (Kalman) gain is obtained
from Equaticn (2-32a) as

(3-61) K= I - FTIH] Q' = [T - FTIH] [Ao - HPTIH]!
which completes the model parameter identification algorithm,
3.2 Model Oxdex Detezrmination

Model order determination is a necessary decision for any
identification algorithm in applications where the true order of
the system generating the channel output data is unknown, or where
the true process generating the data may not belong to the model
class adopted to represent the data. In the second case the model
generated by the algorithm is a "representation model," as opposed
to a "physical model" (a model based on accurate analyses of the
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underlying physical processes)., Determination of the model order
is always a difficult problem, and the solution is rarely clear-
cut. The Van Overschee-De Moor identification algorithm does have
several strong features that lead to robust model order
estimation, Principally, the algorithm identifies the model
parameters of the innovations representation for the multichannel
process in balanced coordinates. Model order determination is an
important issue and deserves detailed analysis during Phase II.

The prime mechanism for model order selection in the
algorithm is examination of the diagonal values of matrix S

(recall that the diagonal elements of SL are real-valued, non-

negative, bounded by unity and zero, and are arranged in order of
decreasing magnitude). As indicated earlier, the innovations
model identified by the algorithm is in balanced coordinates

(Moore, 1981), and the steady-state correlation matrices of the
state of both.the forward (I1) and backward (Il)) innovations models

are equal to matrix SL. In a system representation in balanced

coordinates the position of a state in the state vector \is
indicative of the importance of the contribution of that state to
the output correlation sequence (the first state is equal in
importance or more important than the second state; etc.), and the
magnitude of the corresponding correlation matrix element 1is
representative of the relative contribution of that state. Thus,
an effective model order selection approach is to identify the
negligible diagonal elements of matrix S|, and select the model

order to be equal to the number of non-negligible diagonal
elements of Si.

In most situations involving a finite amount of data, all the
diagonal values in matrix S| are different from zero. This is due

to the fact that the subspace decomposition is imperfect with
finite amounts of data because the measurement noise {W(n)} corrupts
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the past output subspace, and vice versa. In such cases, model

order can be estimated by identifying jump discontinuities in the
magnitude of the diagonal values of .

Other criteria can be examined to estimate model order.
Squaring the diagonal values of S| emphasizes discontinuities, and

thus provides a good criterion also. The normalized running sum
of the diagonal values of S, and the normalized running sum of

the squared diagonal values of SL, are two additional criteria for

model order selection.

In the absence of one or more jump discontinuities, external
information may be required, such as prior knowledge of the system
being modeled. Alternatively, a reasonable model order can be
selected, and various analyses can be carried out to reduce the
order of the model taking advantage of the features of a state
space realization in balanced coordinates.

Other cohsiderations for model order determination arise in
the calculation of the QSVD for the matrix pair RB and RC. It

turns out that incorrect determination of the rank of a certain
matrix in the generation of the QSVD of the matrix pair Rp and Rg

can lead to major difficulties in the determination of model
order. As in Appendix B, let a 2JLxJL matrix B denote the
concatenation of matrices Rpg and R; as (relevant equations from

Appendix B are repeated here for simplicity)

(3-62) B=|.....

Application of the QSVD to the matrix pair RB and HC leads to the

decomposition, expressed for the general case where rank(B) <JL,
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UlS. Ouirng! W
L
ViIT.  Oui-re ]

OJL- r(B),JL OJL- r(B).JL

~where r(B) denotes rank(B). As indicated in Section 3.1, the column
space of matrix RB is equal to the column space of OL' and as is

(3‘63&) B -

(3-63b) B ay,

well known, the dimension of the column space of OL is equal to
the model order, N. Therefore, the decomposition of Rpg in

Equation (3-63) is indicative of model order. In fact, model
order information is included in matrix SL, since matrix YL is non-

singular and matrix UL is unitary. This is another interpretation
of the order-determining properties of matrix SL‘

An important result associated with the decomposition (3-63)
is Grassmann's dimension theorem. This theorem can be stated as

(3-64) dim[range(Rg) M range(R¢)] = rank(Rg) + rank(Rg) - rank(B)
Another relevant result follows directly from first principles,

(3-65) rank(B) 2 max[rank(Rg), rank(Rg)]

Joint consideration of Equations (3-64) and (3-65) indicates that
the model order, N, satisfies the following constraint,

(3-66) N < rank(B) s JL

This equation implies that under-estimation of the rank of matrix
B in the process of generating the QSVD for the matrix pair Ry and
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Hc forces the dimension of the model to be a small value, whereas
over-estimation of the rank of matrix B drives the dimension of
the model towards large values. In the approach adopted herein
the second condition is preferable because the innovations model
parameters are estimated in balanced coordinates, and model order
reduction is robust and effective in such cases, as discussed
above, Therefore, in the generation of the QSVD for the matrix
pair Rg and Ry it is preferred to select the rank of matrix B (or
the respective matrices in the other QSVDs) to be as large as
possible. In most practical cases where noise 1s present, the

rank is likely to assume its maximum value, JL.




4.0 INNOVATIONS SEQUENCE GENERATION

In the approach pursued in this program, an unknown system of
the form (2-2) is modeled as an innovations representation (2-29).
Thus, once the innovations model parameters have been identified,
an optimal Kalman filter can be configured to generate the
innovations sequence, {g(n)}, for the likelihood ratio calculations.
The approach described in this section 1is applied to the
observation data under each of the two hypotheses.

Any one of several equivalent Kalman filter formulations can
be applied to generate the innovations sequence. However, the
one~-step predictor formulation offers significant advantages in
the context of the intended application (Anderson and Moore,
1979). Specifically, the one-~step predictor formulation generates
the innovations sequence and the filter state update with a simple
structure in..the case where the input and output noises are
correlated (S#[O] in Equation (2-5a)), and thus imposes less real~
time computational requirements than other formulations. Also,
the model identification algorithm generates the parameters for
the innovations model. Thus, the one-step predictor formulation
is adopted in this work. Strictly speaking, the terminology "one-
step predictor" should be used hereafter, but use of the term
"Kalman filter" is accepted universally. Both terms are used
herein,

The steady-state one-step predictor formulation for the
innovations model (2-29) 1is a~” linear, time-invariant system
described by the following equations:

(4-1a) g(n+1|n) = Fg(n|n-1) + Kg(n) n2ne

(4-1b) g(n) = x(n) - X(n|n-1) = x(n) - HR&(n|n-1) n2ng
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(4-1c) g(nojng-1) =0

Here Q(n+1|n) is the estimate of the innovations model state vector
at time n+1 based on observation data up to time n, ¥(n|n-1) is the
estimate of the observation vector at time N based on observation
data up to time n-1, and g(n) is the innovations associated with the
observation X(n). Matrix K is the steady-state filter gain matrix.
The filter initial condition is set equal to zero because the
innovations model initial condition is zero, Equation (2-29c). A
block diagram of the Kalman filter is presented in Figure 4-1,
displaying the channel output vector as input, and the innovations
sequence vector as output.

x(n) —L(E — ¢(n)

Z(n|n-1)

N

Figure 4-1. Kalman filter block diagram, emphasizing the
innovations sequence generation filter function.

The steady-state filter is an approximation to the optimal
time-varying filter. 1If the channel output process is in steady-
state, this approximation provides acceptable performance.
Additionally, the steady-state filter provides a significant
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reduction in the real-time computational requirements over the
time-varying filter. In the cases where the channel output
process is not in steady-state, filter performance is suboptimal,
and the degree of loss of optimality needs to be ascertained.
Such a determination is a subtask for Phase II. A related issue
involves filter initialization transient effects. Since the

steady~-state filter gain is used, it may be necessary to neglect
the first N; filter outputs for each data batch. Determination of

the value of N; can be carried out via analysis and simulation, and

is another subtask for Phase II.

Anderson and Moore (1979) show that the filter estimation
error for an innovations model is zero at all times. That is,

(4-2) a(n+1 [n) = g(n+1)

Correspondingly, the filter estimation error correlation matrix is
zero also. This can be inferred from the parallelism between the
innovations model (2-29) and the filter representation (4-1).
Thus, knowledge of the filter implies knowledge of the innovations

model, and viceversa.




5.0 LIKELIHOOD RATIO DETECTION

A detection methodology for complex-valued multichannel
Gaussian processes has been developed by Michels (1991) in the
context of innovations-based detection. This approach has been
generalized recently to include a class of non-Gaussian processes
known as spherically-invariant random processes (SIRPs) and using
linear estimators (Rangaswamy, Weiner, and Michels, 1993).
Michels' methodology can be applied directly to the innovations
sequence generated by the approach formulated herein. For
brevity, only the likelihood ratio equation is presented here.

As discussed in Section 4.0, a Kalman filter (one-step
predictor) is determined for each of the two hypotheses based on

processing the multichannel data. The model order for the
alternative hypothesis (H;) filter is chosen to be larger than the
model order .for the null hypothesis (Hg) filter. For each

hypothesis filter, denote the innovations sequence, Equation (4~
lb), as

(5~1) g(nm.) X(n) - Z(n|n-1:H,) = x(n) - H'&(n|n-1:H)) i =0, 1

The steady-state correlation matrix of the innovations is denoted
as Q(H), and is defined in Equation (3-60).

Let O(HyH,) denote the multichannel likelihood ratio as

defined by Michels (1991) for the Gaussian signal case. Then, the
log-likelihood ratio (LLR) can be expressed as follows,

Nr
(5-2) IS(Hy.Hy)) = 2 [”{JQL’L} E"(nlMg ) Q7 (Ho) g(niMo )
Nan,

Q(H,)|

- gM(nlHy ) Q' (Hy) e(nHy )]




The LLR is compared to a threshold, T, which is calculated

adaptively to maintain a constant false alarm rate (CFAR),

2T select H,
(5-3) IN@(HoH,)] =
<T select H,

A candidate CFAR approach with demonstrated good performance
calculates the median of a set of the LLR values from a number of
adjacent range cells (at the same azimuth) on both sides of the
cell in question, and scales the calculated median value by a
pre~determined constant to provide the desired false alarm rate
(Metford and Haykin, 1985). ‘

The LLR expression has to be modified if optimal time-varying
filters are used instead of the steady-state filters, In such
cases the modification is straightforward, and involves replacing
the steady-state correlation matrices of the two innovations by
their time-varying values.

Alternative expressions for the log-likelihood ratio can be
generated based on factorization of the innovations correlation
matrix and spatial whitening of the innovations process. This
includes Cholesky factorization, LDU decomposition, and SVD., The
first two techniques have been described by Michels (1991), and
lead to simplified LLR expressions. The SVD technique is derived
here.

Consider the steady-~state innovations correlation matrices
for each of the two hypotheses and carry out an SVD on each
correlation matrix., This results in the following decompositions:

(5-4) QH;) = Vv, L;V" i=0,1




where matrix V; is a JxJ unitary matrix, and Z; is a diagonal matrix
with real-valued, positive elements arranged along the diagonal in
decreasing order of magnitude (it is assumed herein that the
correlation matrix of the innovations sequence has full rank).
That is,

o2 0 ... 0
2
(5-5a) Z;m=| O %2 O i =0, 1
L0 0 - o
2 5 42 i a0 -
(5-5b) o2 20%2...205>0 i=0,1

Since matrix V; is unitary, the determinant and inverse functions
of Q(H)) are obtained easily as

(5-6) Q'H) = v, g'v! im0, 1
(5-7) | QUH)| = I‘IOﬁ i=s0,1
Kel

Now make a linear transformation on the innovations sequence using
the unitary matrix V,, to obtain

(5-8) y(niH) = Vi'g(nlH) im0, 1

The transformed innovations sequence, Y(n(H;), is uncorrelated
spatially as well as temporally (recall that g(n|H) is uncorrelated
temporally), with correlation matrix I;. Transformation of a J-
dimensional vector by a unitary matrix rotates the vector in the J-

dimensional space, but does not alter its magnitude. Thus, the
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spatial whitening transformation does not alter the variance of
the elements of the innovations vector.

Substituting Equations (5-4) through (5-8) into Equation (5-
2) results in the following LLR expression

N J 2 2 2
(5-9) INOHHY)] = 3 Z{| _‘1%3_] . lvk(nlzﬂo)l ) Ivh(nlzh )|
Nefy ket 0'”( o'°k 0’"(

where V,(n|H)) denotes the kth element of y(n|H;). This LLR is of the

same form as the LLR derived by Michels (1991) for spatial
whitening of the innovations using an LDU decomposition.




6.0 SOFTWARE SIMULATION

The identification and filtering algorithms described in the
preceding sections have been programmed in FORTRAN 77 for Apple
Macintosh processors. Support software for the validation and
execution of the routines has been generated also. The support
software includes signal generation routines, auxiliary routines

for validation, and code for miscellaneous calculations. The
identification algorithm makes use of the singular value and QR
decompositions. Subroutines that implement these matrix

operations for complex-valued matrices were obtained from versions
of the LINPACK software package (Dongarra et al., 1979). Separate
code was written and exercised to validate the LINPACK routines

before incorporation into the main algorithm code. The signal
generation code uses a Gaussian random number generator obtained
from the text by Press et al. (1989). Sample realizations

generated by this code were tested for whiteness and gaussianity.
6.1 Softwarxe Validation

Code validation was carried out in two steps. First, all
subroutines and select segments of code were validated
individually. Second, the complete package was validated using
examples generated for that purpose. The examples consisted of
system models with a simple structure so that the computer output
could be predicted, Both real-valued and complex-valued examples
were generated. One particular example used is the second-order

system defined by the following matrix parameters (for a system
model of the form (2-2)):

L ETT 0P
- [
fay 1




HH-G-DH-Q-C-IQ

This model was used to generate a random vector sequence to
validate various aspects of the software. For example, defining
matrix F with fyym=fj;=mf); =0 and f3y =1 generates an output vector
sequence that consists of white noise in each output channel, but
the two channels are correlated from one instant to the next (the
correlation is due to the coupling induced by the non-zero (2,1)
element of F). The output of the identification program should
indicate a first-order model, with the first diagonal element of
matrix S approximately equal to 0.7071, and low values for the
remaining diagonal elements. This was the result obtained.
Complex-valued test cases using this sample model were generated
by letting F be a diagonal matrix with the desired complex-valued
poles along the diagonal.

During validation and testing it was discovered that system
poles along the real axis are more difficult to estimate, and that
Equation (3-49) can produce biased results (over-estimation of the
system poles) in some cases. This has been observed also by the
research team at the Catholic University of Leuven, and one
approach to mitigate this consists of utilizing alternative, more
complex algorithms for the estimation of matrix F. Identification
and detailed evaluation of these alternatives 1is an activity for
Phase II of this program.

6.2 Analyses and Simulation Results

The software has been exercised with cases generated using
multichannel AR models provided by the program monitor at RL, Dr.
James H. Michels. These cases consist of signal only, clutter
only, signal + noise, clutter + noise, and signal + clutter +
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noise. In all cases the signal, clutter, and noise processes are
statistically independent of each other.

Sigoal AR _Model

The signal model is a complex-valued, two-input, two=-output
AR model of order 2 with the following matrix parameters,

Ya(n) = - AN (1)gg(n-1) - AN(2)g4(n-2) + uy(n)

A1) = [ 1.6290 - | 1.4241x107 1.3733x10°% + | 3.8202x10"3 l
]
1.3733x10°® + j 3.8202x10""3 1.6290 - | 1.4241x107

The input to the signal AR recursion, {Usn)}, is a zero-mean, unit

variance white noise sequence with a spatial correlation structure
defined as

Q, - [ 013038 012907
* 1012907 0.13038

This two-input, two-output AR model corresponds to a fdurth—order
state space model in an innovations representation (as described
in Appendix A), with poles at the following locations in the
complex z-plane:

Irue Signal Model Poleg: -0.81451 £ j 0.38282
-0.81449 £ J 0.38281

This AR system was defined by Michels to have a very high channel-
to-channel correlation (~0.99), which indicates that a lower-order
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model could represent the signal informarion. Specifically, a
second~order state space model can represent the signal
information well,. Notice that the pole locations are almost
repeated roots, which indicates that the two channels are almost
identical. Therefore, given a high-level of channel-to-channel
rorrelation, a reduced-order model should perform adequately.

The AR process ({y,(n)}] is corrupted by a zero-mean, unit-
variance white nolse sequence {W(n)} to give the noise-corrupted
channel output sequence as

Xqo(N) = Yo(n) + W(N)

For this noise model and the signal model given above, the signal-
to-noise ratio (SNR) is approximately 3 dB.

Consider the problem of representing the AR signal in
additive white noise with a state space model. The channel output
noise, {w(n)}, alters the parameters of the state space model
designed for the AR signal {Y¥4(n)} only, but {X¢(n)} can be represented
as the output of a state space model. That is, {yg(n)} is
represented as the output of an innovations model, but the model
for {X4(N)}, which includes the additive noise {w(n)}, is not an
innovations model (there is an innovations model for (X¢(n)}, but it
is different from the innovations model for {¥¢(n)}). This is a
manifestation of the well-known fact that an AR process corrupted
by additive output white noise is no longer an AR process. In
contrast, the state space model remains a valid representation of
the signal even after the addition of a new noise source. This is
one of the reasons why algorithms developed based on state space
models are more robust than algorithms based on time series
models.
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Clutter AR Model

The clutter model is a complex-valued, two-input, two-output
AR model of order 2 with the following matrix parameters,

¥e(n) = - AR(1)ye(n-1) - AH(2)ye(n-2) + we(n)

H -1,0430 0.0
Ac(1) = [ 0.0 -1.0430 ]
H 0.4900 0.0

Ac(2) '[ 0.0 0.4900]

The input to the clutter AR recursion, {U.(n)}, is a zero-mean, unit

variance white noise sequence with a spatial correlation structure
defined as

" [1.5502 0.0
Qc‘[ 0.0  1.5502

This two-input, two-output AR model corresponds to a fourth-order
state space model in an innovations representation (see Appendix
A), with poles at the following locations in the complex Z-plane:

True Clutter Model Poles: 0.5215 * j 0.4669
0.5215 £ 3j 0.4669

The clutter AR coefficient values, the noise covariance values,
and the diagonal structure of this AR system indicate that the two
channels are uncorrelated. Thus, a fourth-order state space model
can represent the clutter information well, Notice that the pole
locations are repeated roots, which indicates that the two
channels are identical.
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The clutter AR process {¥.(N)} is corrupted by the zero-mean,
unit-variance white noise sequence {w(n)}] to give the noise-

corrupted channel output sequence as
Xc(n) = ¥o(n) + w(n)

For this noise model and clutter model the clutter-to-noise ratio
(CNR) is approximately 6 dB.

Selected Simulation Results

The identification and filtering software was exercised with
the sequence {X(Nn)}. Calculated values of the model order criterion

parameters, the diagonal elements of matrix SL, indicate that a
second-order state space model is a good approximation to this
system, as expected. Specifically, the values of the diagonal
elements of matrix S are: {0.9804, 0.9776, 0.6712, 0.6360,
0.1215, 0.0912}), and the set of the square of these values is:
{0.9612, 0.9557, 0.4505, 0.404S5, 0.0148, 0.0083}. Examination of
these two sets indicates that a second-order model is a good fit
to the data. The next reasonable model order selection is four.

Based on the above discussions, model order 2 was selected
for the AR signal in white noise. Figure 6-1 is a plot of the
real part of the first element of a single realization of the
innovations vector process, {€(n)}, generated using a filter of
order 2 (all plots herein are for single-realization cases). The
filter parameters were identified using 2,214 output segquence
vectors (corresponding to L= 8 and M= 2,200 in Equations (3-21)
and (3-22)). Only 500 points are shown in the figure, but these

points are representative of the sample process. The innovations

sequence appears to be unbiased, with a calculated sample mean of




5(n) = [0:0103 +]0.0074
£ 0.0308 - j 0.0050

Notice also the high degree of "whiteness" exhibited by the
innovations. The imaginary part of the innovations behaves
similarly. The autocorrelation function of the sequence in Figure
6-1 was estimated, and is shown in Figure 6-2, This figure
clearly indicates the random (white) nature of the innovations, as
expected. The zero-lag innovations correlation matrix identified
by the software using Equation (3-60) is

1.5337 0.5908 + j 0.C45%5 "
0.5908 - j 0.0453 1.5832 |

Q =
This agrees very well with.the sample correlation value of 1.536
indicated in Figure 6.2. Several simulation runs were made using
multiple sample realizations of the same length and filter order
two. A plot. of the innovations correlation averaged over ten
realizations looks very similar to Figure 6-2.

first element of innovations vector for case of signal plus noise
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Figure 6-1. Real part of the first element of innovations vector

for the case of signal plus noise.
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first element of innovations covariance for case of signal plus noise
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Figure 6~2. Real part of the auto-correlation function of the
first element of the innovations sequence vector for the case of
‘ signal plus noise.

Identification algorithm performance c¢an be assessed by
examining the roots of the identified innovations model system
matrix, F. The scatter plots in Figure 6-3, which correspond to
results obtained for ten distinct realizations, illustrate the
parameter identification capability of the algorithm. These
scatter plots show the ten identified root pairs, all in close
proximity to the true roots given above. The dashed lines in each
plot intersect at the center of each plot (-0.81 - j 0.38 and -
0.81 + 3 0.38, respectively), and the centers are very close to
the true root values (~-0.8145 £ j 0.3828). All the identified
roots are at a distance less than 3% of the true values, and most
are much closer than that.
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Figure 6-3. Scatter plot of real and imaginary parts of
identified model poles for ten distinct realizations of signal
plus noise.

7 The software was used also to model and analyze the clutter
plus noise sequence, {X.(N)}]. For this case at a CNR of 20 dB, the

model order criterion parameters, the diagonal elements of the
matrix S are: {0.8187, 0.7919, 0.3027, 0.2748, 0.1340, 0.1112};
and the set of the square of these values is: (0.6703, 0.6271,
0.0916, 0.0755, 0.0180, 0.0124}). This information, together with
knowledge of the lack of channel correlation, indicates that a
fourth-order state-space model is a good approximation to this
system, Without prior knowledge regarding channel correlation,
measures such as the percentage incremental power attributable to
each additional singular value may result in improved model order
estimates.

Model order four was selected for state space representation
of the clutter AR process in additive white noise. Plots of the

real and imaginary parts of the first element of a single
realization of the innovations vector process, {€(n)}, are presented
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in Figure 6.4. These results were generated using a fourth-order
filter for a case with 6 dB CNR,. The filter parameters were
identified using 2,214 output sequence vectors (corresponding to L
= 8 and M= 2,200 in Equations (3-21) and (3~22)), as in the signal
+ noise case. Only 500 points are shown Figure 6.4, but these
points are representative of the sample process. Both components
(real and imaginary) of the sequence {e{(n)} are unbiased, as

indicated by the sample mean,

5(n) = | - 0.0101-j0.0429
£ 0.0538 + j 0.0076

An estimate of the real and imaginary parts of the sample
autocorrelation function of {g(n)} of Figure 6-4 is given in Figure
6~5. The real part has an impulse at lag N=0 and is close to zero
everywhere else, which is representative of a white innovations.
The imaginary part exhibits low-amplitude oscillations about zero,
as expected of a white innovations. The zero-lag innovations
correlation matrix estimated using Equation (3-60) is

Q. 31114 0.0594 + | 0.0248
0.0594 - | 0.0248 3.3048

Element (1,1) agrees with the sample correlation value of 3.106 +
j 0.0 indicated in Figure 6-5. The behaviour of {€x(n)} is similar.

Figure 6-6 presents scatter plots of the poles of the fourth-
order system for ten realizations. The roots are clustered about
the values of the true repeated roots (0.5215 % j 0.4669), which
are indicated by the intersections of the dashed lines. The
largest root estimation error is less than 8.2%. This error 1is
larger than the worst error in the signal plus noise case, and is

due to the greater difficulty in estimating faster modes.




first element of innovations vector for case of clutter plus noise
(order 4, CliR:SdB)
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first element of innovations vector for case of clutter plus noise
(order 4, CNR=6dB)
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Figure 6~4. Real and imaginary parts of the first element of the
innovations sequence vector for the case of clutter plus noise
(CNR = 6 dB conditions).
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first element of innovations covariance for null hypothesis data
using null hypothesis filter (order 4, CNR=6dB)
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Figure 6-5. Real and imaginary parts of the auto-correlation
function of the first element of the innovations sequence vector
for the case of clutter plus noise (CNR = 6 dB).
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Similar biased behaviour has been observed in other
estimation results (Michels, 1992b), as well as in detection
performance results (Michels, 199%2a) obtained using time series
(AR) models. For the state-space approach pursued herein,
unbiased estimates with reduced variance can be obtained by
averaging several individual estimates and/or by increasing the
complexity of the estimation algorithm.

Various simulations were carried out to obtain a first-order
assessment of the discrimination capability of the innovations-
based methodology using the SSC algorjithm. One set of simulations
involved designing a Kalman filter for each hypothesis, processing
data corresponding to each of the two hypotheses using both
filters, and analyzing the resulting four filter output sequences
(two filters, and each filter processes data sets corresponding to
each of the two hypotheses). These results are presented next.
As before, all plots correspond to single-realization cases.

Consider first the case of processing data from each of the
two hypotheses using a null hypothesis filter, corresponding to
clutter + noise only. For this case the filter order is four, as
mentioned earlier in the clutter plus noise model discussion.
Results are presented herein for two sets of conditions: (a) SNR =
3 dB and CNR = 6 dB; and (b) SNR = 3 dB and CNR = 20 dB. For each
set of conditions the procedure described next was followed,

* A realization of the clutter + noise process of duration
M= 2,200 was generated and processed to design a

fourth-order Kalman filter. The resulting filter is the
filter for the null hypothesis (signal not present).

* The null hypothesis filter was applied to a clutter +
noise process sequence of duration M= 2,200, and the
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sample correlation matrix sequence of the filter output
sequence was calculated. The real and imaginary parts
of the (1,1) element of the resulting sample correlation
matrix sequence are plotted in Figure 6-5 for CNR = 6 dB
conditions, and Figure 6-7 for CNR = 20 dB conditions.
Both sets of figures are representative of the auto-
correlation of a white innovations sequence, as expected
{both sets of figures show low-level energy content at
the higher lags).

* The null hypothesis filter was applied to a combined
signal +.clutter + noise process sequence (alternative
hypothesis case) of duration M= 2,200, and the sample
correlation matrix sequence of the filter output
sequence was calculated. In this case, however, the
sequence is not a true innovations sequence ba2cause the
filter is not optimal for this process. The real and
imaginary parts of the (1,1) element of the resulting
sample correlation matrix sequence are plotted in Figure
6-8 for-CNR = 6 dB conditions, and Figure 6-9 for CNR =
20 dB conditions. Both of these figures show a marked
deviation from the expected auto-correlation for a white
innovations sequence.

In the discussions and results presented above the (2,2) element
of the sample correlation matrix is not referred to. This is due
to the fact that its behaviour is very similar to the behaviour of
the (1,1) element.

In continuation of the first-order assessment of the
discrimination capability of the SSC approach, consider now the
case of processing data from each of the two hypotheses using an
alternative hypothesis filter, corresponding to the combined
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process of signal + clutter + noise. Since the signal and clutter
are uncorrelated in this set of examples, a sixth-order state
space model is required ror the combined process. As before,
results are presented for two sets of conditions: (a) SNR = 3 dB
and CNR = 6 dB; and (b) SNR = 3 dB and CNR = 20 dB. For each set
of conditions the procedure described next was followed (all plots
are for single-realization cases).

¢ A realization of the combined signal + clutter + noise
process of duration M = 2,200 was generated and
processed to design a sixth-order Kalman filter,. The
resulting filter is the filter for the alternative
hypothesis (signal present).

* The alternative hypothesis filter was applied. to a
cowoined process sequence of duration M= 2,200, and the
sanple correlation matrix sequence of the filter output
sequence was calculated. The real part of the (1,1)
element of the resulting sample correlation matrix
sequence 1is plotted in Figure 6~10 for CNR = 6 dB
conditions, and Figure 6-11 for CNR = 20 dB conditions.
As attested in both figures, the correlation sequences
correspond to white innovations sequences, as expected
(both figures show low-level energy content at the
higher lags).

* The zlternative hypothesis filter was applied to a
clutter + noise process sequence (null hypothesis case)
of duration M= 2,200, and the sample correlation matrix
sequence of the filter output was calculated. In this
case, however, the sequence is not a true innovations
sequence Dbecause the filter 1is not optimal for this

process. The real part of the (1,1) element of the
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rasulting sample correlation matrix sequence is plotted
in Figure 6-12 for CNR = 6 dB conditions, and Figure 6-
13 for CNR = 20 dB conditions. The correlation sequence
in each of the figures corresponds to a colored process,
and not to a white innovations sequence., This is the
expected result.

Figures 6-10 through 6-13 do not include the imaginary part of the
sample correlation sequence because it is similar to the imaginary
part of the sample correlation sequence presented in the preceding
figures. For this case also the behaviour of the (2;2) element is
very similar to that of the (1,1) element of the sample
correlation matrix sequence

These results indicate that the innovations-based detection
methodology using the identification algorithm adopted in this
program can discriminate between data corresponding to each of the
twé hypotheses. That i{s, a filter designed for the alternative
hypothesis (signal + clutter + noise) generates a true innovat »ns
sequence given a signal + clutter + noise channel process, and
generates a colored output given a clutter + noise channel
process. Analogously, a filter desigrnied for the null hypothesis
(clutter + noise) generates a true innovations sequence given a
clutter + noise channel process, and generates a colored output
given a signal + clutter + noise channel process,
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first element of innovations covariance for null hypothesis data
50, using null hypothesis filter (order 4, CNR=20dB)_
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Figure 6-7. Real and imaginary parts of the auto-correlation
function of the (1,1) element of the innovations sequence vector
for the case of null hypothesis data using the null hypothesis
filter (CNR = 20 dB conditions).
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first element of innovations covariance for aiternative
hypothesis data using null hypothesis filter (order 4, CNR=6dB)
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Figure 6-8. Real and imaginary parts of the auto-correlation
function of the (1,1) element of the filter output vector for the
case of alternative hypothesis data using the null hypothesis
filter (CNR = 6 dB conditions).
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first element of innovations covariance for alternative hypothesis
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first element of innovations covariance for alternative

5 hypothesis qata using alterngtive hypothesis ﬂ_lter (order 6)
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Figure 6-10. Real part of the auto-correlation function of the

(1,1) element of the innovations sequence vector for the case of

alternative hypothesis data using alternative hypothesis filter
(CNR = 6 dB conditions).

first element of innovations covariance for alternative hypothesis
50 data using alternative hypothesis filter (order 6, CNR=20dB)
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Figure 6-11. Real part of the auto-correlation function of the

(1,1) element of the innovations sequence vector for the case of

alternative hypothesis data using alternative hypothesis filter
(CNR = 20 dB conditions).
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first element of innovations covariance for null hypothesis
data using alternative hypothesis filter (order 6)

% 4
5 2F! 1
< |
s _
8' kS
E \
8 oF \‘ U NI e PR J
o e
R

-1 . . .

0 5 10 15 20

time index, n

Figure 6-12. Real part of the auto-correlation function of the
(1,1) element of the filter output vector for the case of null
hypothesis data using the alternative hypothesis filter

' (CNR = 6 dB conditions).

first element of innovations covariance for null hypothesis data
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Figure 6-13. Real part of the auto-correlation function of the
(1,1) element of the filter output vector for the case of null
hypothesis data using the alternative hypothesis filter
(CNR = 20 dB conditioens).
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7.0 CONCLUSIONS AND RECOMMENDATIONS

The work carried out in this program emphasized the
development and analysis of a state space methodology and
algorithm for the model-based multichannel detection problem in
the context of radar system applications. Application of state
space techniques for multichannel detection in radar systems is
one novel aspect of the work reported here. The state space model
class is richer than the time series model class that is used
often in radar system applications. And, as demonstrated in this
work, the state space model class can be used to represent
effectively multichannel radar signals.

Another novel aspect of the work is the utilization in the
detection methodology of a new algorithm developed by Van
Overschee and De Moor (1993). This algorithm was adopted in the
program for multichannel radar output modeling and parameter
identification. In the process, the algorithm was extended to the
case of complex-valued radar system data, and an alternative
derivation of the algorithm was developed which is simpler and
easier to follow than the one presented in the forthcoming paper
(Van Overschee and De Moor, 1993). The selected approach uses
channel output data directly (as opposed to output correlation
matrices) to estimate model parameters. This eliminates the large
computational burden associated with the generation of the output
correlatior matrix sequence, and leads to reduced numerical
precision (dynamic range) requiremehts. Furthermore, in a
practical environment it may be possible to start processing the
data as it is received. In contrast, techniques which require the
computation of channel output correlation matrices have a built-in
delay because the calculation of every lag requires availability
of all the channel output sequence,
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The Van Overschee-De Moor algorithm belongs to a class of
techniques referred to as subspace methods. Subspace methods are
based on decomposing the vector space spanned by the channel
outputs into signal and noise subspaces. This decomposition is
carried out with robust numerical techniques such as the SVD and
the QR decomposition. Thus, the algorithm offers numerical and
performance advantages over other techniques.

A computer simulation was developed to validate the algorithm
and methodology, and to serve as a testbed for evaluation of the
algorithm in radar system applications. The simulation can be
exercised with internally-generated sample multichannel output
data, or with externally-provided data. Extensive tests were
carried out to validate the code.

Simulation-based analyses carried out to date demonstrate the
feasibility of the SSC state space approach for multichannel
identification and detection in radar system applications. The
algorithm has demonstrated the capability to discriminate between
signal plus clutter plus noise and clutter plus noise in an
innovations-based detection algorithm formulation for the
multichannel detection problem. Several cases have been analyzed
at various SNR and CNR levels, and in all cases simulated thus far
discrimination has been demonstrated.

In the process of completing the work reported here several
areas have been identified for further research and development in

a Phase II of this program. These areas are summarized below.
P R i Definit

Determination of the true potential of the SSC approach for
radar system applications requires the establishment of a detailed
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set of requirements for various radar problems such as space/time

processing in a radar array system, the fusion of data

multiple distinct r. dar systems, and the fusion of multiple

measurements (dual-polarization measurements, for example).

detailed sets of requirements need to be defined for

application areas such as hydrological systems, seismic

detection, and medical technology.

Additional Analyses and Detailed Algorithm Formulation

from
radar
Also,
other
event

The analyses listed below are required to generate a detailed

algorithm definition for the requirements, and to provide a

precise assessment of the SSC approach in the context of the

requirements.

The innovations model matrix parameters F, I', and H can
be estimated using different equations. Some of the
alternative equations can exhibit bias errors, but may
be simpler to implement. These alternatives need to be
evaluated and traded.

Model order selection criteria for on-~line and off-line

decisions need to be evaluated and traded. This
includes the diagonal values ({sj of matrix S, the

square of the {S}, and their normalized running sums.

The steady-state Kalman filter was used in this Phase I
to generate the innovations sequence. Alternatively,
the time-varying Kalman filter can be used. The loss
in performance, if any, incurred by using the steady-
state approximation needs to be evaluated. A related
issue is the duration of the transient effect in the
case of the steady-state filter.
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Once these technical issues are addressed,
design can be defined.

Key implementation parameters need to be established.
This includes the minimum required channel output
sequence duration, and the row dimension of the Hankel
output data matrix.

Identification and detection performance should be
compared with that of other methods. This includes
state space methods that operate on output correlation
matrix data, and methods based on AR models.

A detailed algorithmic approach to the implementation
of the QR decomposition and the QSVD needs to be
defined. In this context, a new decomposition for
rectangular matrices introduced by Stewart (1992)
should be reviewed for possible utilization in the SSC
approach. This decomposition is related to the QR
decomposition and to the SVD, and can be updated
recursively in a simple manner. The recursive feature
is attractive for reducing the computational load.

Real=Time P Archi Desi

A real-time implementation architecture for the algorithm
needs to be developed,

Generation of an architecture design that best meets
the features of the detailed algorithm design and the
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a detailed architecture

and a candidate hardware implementation
should be identified. Specifically, the following issues should
be addressed.



established processor requirements. The result may be
an architecture with features different from those in
existing processors, and which is likely to consist of
various fundamental architectures (systolic; vector;
parallel arrays; etc.).

* Analysis of state-of-the-art processors to determine
which contemporary and next-generation VLSI components
best match the optimized architecture design and the
requirements.

In addressing these issues the emphasis should be on the most
computation-intensive tasks of the SSC multichannel algorithm
reported here.

Brocessor Development System Design

A processor development system should be designed and
installed to serve as a testbed for the development of detection
and identification methodologies and algorithms. The system
should be applicable for on-line laboratory experimentation and
for off-line processing of data ccllected using operational radar
systems. Availability of such a development system will speed up
significantly the algorithm development work at both SSC (during

‘Phase II) and RL (after delivery upon program conclusion) because

the generation of detection results require Monte Carlo analyses
and simulations.
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APPENDIX A. STATE SPACE REPRESENTATION OF TIME SERIES
MODELS

Consider a discrete-time, time-invariant, complex-valued,
zero-mean, random process {X(n)}] defined as the output of the

following state space system model
(A-1a) y(n+1) = Fy(n) + Gu(n)
(A-1b)  X(n) = HMy(n) + Dy(n)

Vector recursive processes such as moving-average (MA), auto-
regressive (AR), and auto-regressive moving-average (ARMA)
processes can be modeled with state variable models (SVMs) of the
form (A-1). The discussion herein is limited to the particular
case where the matrix coefficients of the recursion are square
matrices, and:the number of output coefficients is equal to the
number of input coefficients. The generation of a minimal-order
SVM for a vector recursive process involves the properties of
polynomial matrix pairs and canonical forms for multiple input,
multiple output SVMs.

In contrast, minimal-order SVMs for scalar recursive
processes (MA, AR, ARMA) can be 'generated in a straightforward
manner given the recursion coefficients. The SVM generic form
appropriate for modeling scalar recursive processes is
(A-2a) y(n+1) = Fy(n) + gu(n)

(A-2b) x(n) = hHy(n) + d"w(n)

This SVM is a single-~input, single-output system.
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A.l1 Scalax MA Process Modal

A scalar MA prccess of order M is defined as
Mo
x(n) = Y, byu(n-k)
ka0

x(n) = bau(n) + byu(n-1) + bou(n-2) + . .. + byu(n-M)

where {u(n)} is a zero-mean white noise sequence. This recursion
can be modeled with a state-space system of the form (A-2) with
input sequence {u(n)}, and state vector with elements that are
determined by the input sequence,

Y\(n) U(n"”

¥n) = v n

yM,;(n) - u(n-fwn )
Yu(n) u(n-M)

The output noise sequence is also equal to the input noise
sequence,

w(n) = u(n) v n

which means that the input and output noise sequences in the state
space model are completely correlated. Model parameters (F, g, h,
d) are defined as

"0 0.. .00
10:0:--00 .
el 010 [ N ]
cr 00 Iy Qs
00...... 100
(00 010
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1

Om-1

g.h-

nH-bH
d" = by

with b,H denoting a 1XM vector defined by M of the MA recursion
coefficients,

oHalby by .. b

The special form of matrix F is one of the possible four
variations of the so-called companion matrix form. Also, the
system parameters, the quadruple (F, g, h, d), is a variation of
the so-called controllable canonical form. These forms have the
minimal number of non-zero elements (whereby the name “canonical")
of all possible SVMs that model the scalar MA process.

Note that the definition of the state vector ¥(n) in terms of
the sequence {u(n)} inherently defines the initial condition vector,
¥(0). oOnce the initial condition vector is defined, the state
propagation, Equation (A-2a), provides for continued generation of
the output process.

Verification of the above-defined model proceeds as follows.
The form of matrix F provides for continued "scrolling" of the
input noise sequence as elements of y(n), for all n. Validation of
the model follows from (A-2b) and the definition of h, w(n), and
¥(n). That is,
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x(n) = bMy(n) + d"w(n) = b"y(n) + bou(n)

Expanding the term thﬂﬂ, and substitution of the definition of y(n)
in terms of the sequence {u(n)} results in

x(n) = byu(n) + bju(n-1) + bau(n-2) + . .. +byu(n-M)

which is the MA process definition. Model validation can be
carried out also using the transfer function concept, as
summarized next.

Consider first the derivation of the transfer function from
the MA process.definition. Since the MA process is a discrete-
time process, the appropriate tool for the determination of the
transfer function is the Z-transform. Application of the 2-

transform to the definition of the MA model results in the
expression

M
X(z) = Y by z*U(z)
ke

where Z denotes the transform variable, and X(Z) and U(Z) are the z-
transforms of the sequences (x(n)} and {u(n)}, respectively. The
transfer function for this linear system is then defined as

M
X(z) .
T(2)w == = ) bzk
Uz) Eo “
This corresponds to the transfer function of an all-zero system,
as is well known.

The transfer function for a single-input, single-output state
variable model (A-2) is of the form
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T(z) = btz - FI''g +d"

The particular characteristics of matrix F and vector ¢ lead to a
very simple expression for the product [ZI-F]"g; namely,

“F'q = 1
[z1-FI''g e 8(2)

where Y(2Z) is the system characteristic polynomial (the determinant
of matrix [zI-F)),

Nz) = 2M

and f(z) is vector with elements of the form Gi(z)=zi'1; that is,

QT(?)'[zM" e 22z 1]

Substitution of these expressions and of nH and d° in the equation
for the transfer function leads to the following result

Tiz)= 8@+ ¥2) _ p"0(z) + bipaM

e LR« Mo o)

M
T(2)mby+byZ ' +b22+ ... +byz M = ) bz
kw0

This result is identical to the transfer function expression
derived from the definition of the MA process.

A.2 Scalax AR _Procesa Modsl

A scalar AR process of order M is defined as
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M
x(n) = « > a,x(n-K) + u(n)
ket

x(n) = - ayx(n-1) - a3x(n-2) - ... - ayx(n-M) + u(n)

where {u(n)} is a zero-mean white noise sequence. This recursion
can be modeled with a state-space system of the form (A-2) with
input sequence {u(n)}, and state vector with elements that are
determined by the output sequence,

y1€n) . x(n.“')

n) = :, = ’ vn
¥(n) Y10 x{n-M+1)

Yu(n) x(n-M)

The output noise sequence is equal to the input noise sequence,
w(n) = u(n) vn
This implies complete correlation between the input and output

noise sequernces in the SVM (as in the case of the MA model).
Model parameters (F, g, h, d) are defined as
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[ -a)  -a
1 0
0 1
F=
0 0
0 0
_ g
F=
L IM—1 QM"
1
9-11.
: Q-1
nH-.aH
d =1

»
“8uy "2y

with a" denoting a vector with elements equal to the AR recursion

coefficients,

a'=(a) & ... &

The system parameters quadruple

(F, ¢, h, o,

canonical form, as in the MA model case.
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Note that the definition of the state vector ¥(n) in terms of
the sequence {x(n)} inherently defines the initial condition vector,
¥(0). Once the initial condition vector is defined, the state
propagation, Equation (A-2a), provides for continued generation of
the output process.

Verification of the above-defined model proceeds as follows.
From (A-2a) and the definition of F, y(n), y(n+1), and g, it follows
that
yp(n+1) = - ajy,(n) - aoyo(n) - . .. - ayy(n) + u(n)

yu(n+1) = - a'y(n) + u(n)

Also, it follows from (A-2b) and the definition of h, w(n), and ¥(n)
that

x(n) = My(n) + w(n} = - a"y(n) + u(n)

which indicates that x(n)=yy(n+1). Then, expanding the term -aHx(n)

and substitution of the definition of Y(n) in terms of the sequence
{x(n)} results in .

x(n) = - @yx(n-1) - ayx(n-2) - ... - ayx(n-M) + u(n)
which is the AR process definition.
The transfer function approach can be used also to validate

this SVM for scalar AR processes. Application of the Z-transform
to the definition of the AR model results in the expression
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M
Y, a,z*X(z) = U(2)
k=0

where 8y= 1 is introduced for notational simplicity, and X(2) and
U(z) are the z-transforms of the sequences {x(n)} and {u(n)},

respectively. The transfer function for this linear system is
then defined as

JX@ 1
T(2) U(2) i o 2k
k=0 X

This corresponds to the transfer function of an all-pole system,
as is well known.

Consider now the transfer function for the state variable
model (A-2). In the present AR process case, the system
characteristic polynomial is

fz)wzM+aizM 4.+ 0y, 2+ ay

and the particular characteristics of matrix F and vector ¢ lead
the same simple expression for the product [zI-F]"g; namely,

[z1-FI'g = #z—) 8(z)

where @(z) is as defined previously. Notice that the

characteristic polynomial can be expressed as
¥z) = M+ a"9(z)

Substitution of these expressions and of nH and d' in the equation
for the transfer function leads to the following result
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T - D8R+ d D) | -aM8@) +nz) oM
¥2) ¥(2) ¥(2)

1 1
T(z)- ) =
zTW2) W,
?.:o a\z

This is identical to the transfer function expression de:ived from
the definition of the AR process.

A.3 Scalax ARMA Process Modal

A scalar ARMA process of order M is defined as

M M
x(n) =~ Y ayx(n-k) + 2, bu(n-k)
. ket ka0

X(n) = - @yx(n-1) - ... - @y, ,x(N-M+1) - ayx(n-M) + bou(n) + bju(n-1) +

- +bou(n-2) + ... +byu(n-M)

where {uU(n)} is a zero-mean white noise sequence. This recursion

can be modeled with a state-space system of the form (2) with
input sequence {u(n)}, and output noise sequence equal to the input

sequence,

w(n) = u(n) vn

This implies complete correlation between the input and output
noise seguences in the SVM (as in the case of the MA and the AR
models) . Model parameters (F, g, h, d) are defined as
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T W v
1 0 0 0
o 1
Fa
o 0
o 0 1 0 o0
| 0 0 0 1 0 _
S
L lM-1 QM'1
1
2T s
b = b - boa
d = by

Here, as in the AR case, vector aH has elements equal to the AR

recursion coefficients,

L]

ateld, & ... &

and vector QH has elements defined by M of the MA recursion
coefficients,
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(b} b6y ... bu]

The system parameters quadruple (F, g, h, d), is in controllable
canonical form, as in the MA and AR model cases.

State vector initial conditions, ¥(0), for this case are
related to the input and output sequences in a more complex
manner, and have to be selected appropriately. Once the initial
condition vector is defined, the state propagation, Equation (A-
2a), provides for continued generation of the output process.

The simplest approach to validate this model is via the
transfer function approach. Application of the Z~transform to the

definition of the ARMA model results in the expression

M . M
Y az%X(z) = Y bz *U(2)
ka0 keO

where, as bhefore, X(Z) and U(z) are the 2z-transforms of the
sequences {x(n)} and {u(n)}, respectively, and ay;=1 is introduced for

notational simplicity. The transfer function for this linear
system is then defined as

M » M ]
PILTANDIE

T(Z) = LXjE:; = k;‘o : = k;ﬁo
2 azh Y aMk
ke ka0

where the two polynomial ratio expressions (corresponding to
inverse powers of Z or direct powers of Z) are equivalent, as

indicated. This is a transfer function with both poles and zeros,
as expected for an ARMA process.
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Consider now the transfer function for the state variable
model (A=-2). For an ARMA process the system characteristic
polynomial is

W2)mzM+a2M 4 .+ a2+ 8

which is equal to that for an AR process SVM model. As in the
other two cases,

[21-F]'g = #z—) 8(2)

given the particular features of matrix F and vector @ (8(z) is as

defined previously). Notice also that, as in the AR process case,
the characteristic polynomial can be expressed as

12) = zM + 2Ha(2)

Substitution of these expressions and of hﬂ and d" in the equation
for the transfer function leads to the following result

Ty = 2@ +d'ya) (- via) o) + biva) _ oM+ boca)
"z) - 2 ¥2)

It is easy to verify that this result is identical to the transfer
function expression derived from the definition of the ARMA
process. That is,

M
. by zM-K
be2™ + £"9(2) E, “
T(Z) = ‘Y(z) = v
Y alzM
kmO
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where a,=1, as before.

A.4 Models foxr Vector Recursive Procasses

Vector recursive processes of the MA, AR, and ARMA type can
be represented with SVMs of the type given herein. For vector
recursive processes the appropriate notation is:

MA 2(n) = BEu(n) + BYu(n-1) + BHu(n-2) + . .. + Bllu(n-M)
AR i(n) = - A?x(n-ﬂ - Agx(n-Z) - .- AHMx(n-M) + y(n)
ARMA x(n) = - Ax(n-1) - ... - Al x(n-M+1) - Aflx(n-M) + BHU(n) + Bu(n-1) +

+BYU(N-2) + ... +Blu(n-M)

where each of the coefficient matrices is dimensioned JxJ. Also

analogous to 't:he scalar case, the corresponding transfer function
matrices can be defined using the Z~transform; which leads to

Twal(2) = B(2)
Tan(2) = A'(2)
Tarma(2) = A'(z) B(z)
where A(Z) and B(z) are the following matrix polynomials in Z,
M .H
AR)= Y Az K
ka0

! H
B(z)= ) Byz'k
keQ
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with Ay the JxJ identity matrix. The matrix pair ({A(z), B(z)}
(including the cases with either A(2) =l or B(2)=1) corresponding to
a linear discrete-time system is referred to as a matrix
polynomial representation or a matrix fraction description (MFD)
for the system.

Departing from the time-domain definition for the vector
recursive processes, the SVM for each of the three processes is of
the same form as the corresponding scalar case SVM, with the

following changes: a JxJ coefficient matrix in place of the
corresponding coefficient scalar, a JxJ identity matrix (IJ) in

place of each unit scalar, and a JxJ null matrix (Qj) in place of

each zero-valued scalar. Specifically, the SVM for the ARMA
vector process is:

AR A Al Al
L O - e . Oy O
o
Fa
o, O
0, O, v O O
O O Q, ly O |
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G=

H
Hi=[ gf-Afey BY-AfBf ...  By-AuBH |
DH-B'J

The SVM for the other vector processes (MA; AR) is obtained by

substituting the <correct wvalues for the vector process
coefficients in the above system parameters (that is, Aj=Q, for an

MA process; and Bo=ly and Bj=mOy, i21 for an AR process). In all
cases, the transfer function matrix is obtained from the SVM
representation as

T(2) = HH[z! - F]'G + DM

A transfer function calculated according to this relation is
equivalent to the transfer function calculated from the
appropriate polynomial matrices.

The order (dimension of the state vector) of the resulting
SVM for each of the three vector processes is N = MJ, since for
each process the system matrix F consists of M block rows and M
block columns, where each block in each row and column is a JxJ
matrix. SVM order is important for practical and computational
considerations. An SVM representation is of minimal order if no
other SVM representation of lower order leads to the same transfer
function matrix. 1In terms of the system parameters (F, G, H, D),
the order of the SVM representation is determined by the rank of
the controllability matrix or the rank of the observability
matrix, whichever is smaller. Given the form of the maurix pair
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(F,G) for all three cases, it is easy to verify that the
controllability matrix has full rank for all three cases.
However, the observability matrix has a simple form only for the
MA SVM. The special form of the observability matrix for the MA
case considered herein (with By a square matrix) indicates by

inspection that the rank of the observability matrix is equal to
MJ if and only if matrix By has full rank. Such a simple result
is not available for the AR and the ARMA SVMs. Determination of
the conditions on the coefficients of the polynomial matrices A(z)
and B(z) for AR and ARMA vector processes that lead to an SVM
representation of minimal order is a difficult problem. This is
due to the fact that both AR and the ARMA vector processes lead to
a transfer function matrix with elements which are, in general, a
ratio of polynomials. in 2.

Model order and related issues for matrix polynomial
representations have been discussed by several researchers. The
results summarized next are available in the text by Rosenbrock
(1970) . Consider the matrix polynomial representation of a
system, and assume that the determinant of A(2) is different from
zero to eliminate pathological cases. For an AR vector process,

the order of the system is given by the degree of the determinant
of A(z). Thus, the SVM representation presented herein for vector

AR processes is of minimal order if the determinant of A(Z) (with
Ag= 1)) has degree equal to MJ.

Several definitions need to be introduced prior to stating
the relevant results regarding minimal order for ARMA vector
processes. A square polynomial matrix is said to be regular when
the matrix coefficient of the highest power of 2 is non-singular.
The determinant of a regular polynomial matrix has maximum
possible degree. A square polynomial matrix is said to be
unimodulax if its determinant is a non-zero constant. Unimodular
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polynomial matrices have an inverse which is also a polynomial
matrix. As an example, the polynomial matrix

-1 -1
Q(Z)-Q°+Q1Z'1=|: 1+2 3+2 ]

2+27 4427

is unimodular because the determinant of Q(z) is equal to -2.
Notice that the inverse of Q(z) is also a polynomial matrix,

Q~1(z).J_[ 442" -(3+z")}
(2+2Y)  1+2°

as expected. Notice also that Q(z) is not a regular matrix since
Q, is singular.

Two polynomial matrices A(Z) and B(z) are said to have a gcommon
left divisor S(z) if

A(2) = S(Z)PA2)
B(z) = S(2)Pg(2)

where S8(2), Pa(2), and Pg(z) are polynomial matrices. Finally, if
all the commen (left) divisors of two polynomial matrices A(z) and
B(2) are unimodular, then the two matrices are said cto be
relatively (left) prime. That is, if A(Z) and B(2) are relatively
(left) prime, then the determinant of the polynomial matrix S(z) in

the above factorizations is a constant. This implies that the
degree of the determinant of Pu(z) is equal to the degree of the
determinant of A(Z), and the degree of the determinant of Pg(2) is
equal to the degree of the determinant of B(Z). Furthermore, the
determinant of Pp(Z) has no polynomial factors in common with the
determinant of Pg(z). A matrix polynomial pair (A(z), B(z)) with A(2)
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and B(z) relatively (left) prime is an irreducible matrix
polynomial representation for the system.

The relevant results for ARMA vector processes can be stated
now. As in the AR case, for an ARMA vector process the
determinant of A(2) (with Ag=ly;) must have degree equal to MJ for
the SVM representation presented herein to be of minimal order.

However, two additional conditions must be satisfied. Namely,
matrix By must have full rank, and the polynomial matrices A(z) and

B(z) must be relatively (left) prime. Full rank for matrix By
implies that B(z) is a regular polynomial matrix. If A(Z) and B(2)
are not relatively prime, then the order of the system is reduced

by the degree of the determinant of the greatest common (left)
divisor of A(z) and B(z). This 1is related to the so-called

pole/zero cancelations.
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APPENDIX B. QUOTIENT SINGULAR VALUE DECOMPOSITION

The quotient singular value decomposition (QSVD) 1is a
generalization of the SVD for a matrix to the case of two general
matrices with the same number of columns. As such, it 1is also
referred to as the generalized SVD. This concept was developed by
. Van Loan (1976), who called it the BSVD. Paige and Saunders
(1981) modified the concept and extended its applicability to
general matrices. Their concept 1is summarized herein in the
context of the multichannel detection application. From a
computational viewpoint, the approach suggested by Van Overschee
and De Moor (1993) is adopted. Two distinct cases are considered
herein, corresponding to the two conditions that arise in the
implementation of the identification algorithm (Section 3.1).

B.1 Q3VD for the Matzices of Equations (3-22) and (3-23)

Consider the J(L-1)xJ(L+1) matrix Rp, and the J(L-1)xJ(L-1) matrix
Rg defined in Equations (3-22) and (3-23), respectively. It is
desired to determine the QSVD of the matrix pair consisting of the

conjugate transpose of these two matrices. The procedure is
described below.

The first step is to define a 2JLxJ(L-1) matrix A as the
following concatenation of the conjugate transposes of matrices RD

and Rg:

(B-1) A=l......

Now carry out an SVD on matrix A to get (recall that A has more

rows than columns),
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(B-2D) S, = [Sm [0] ]
[0 0]

In this decomposition the unitary matrix U, is J(L+1)xJ(L+1), matrix
Sp is J(L-1)xJ(L-1), and the unitary matrix V, is J(L-1)xJ(L-1). Matrix
SA is diagonal, with real-valued non-negative elements along the
diagonal arranged in decreasing order of magnitude (the largest-

valued element occupies the (1,1) position). The diagonal
elements of matrix S, are the singular values of matrix A. The

rank of matrix A, denoted herein as KA = rank (A), is equal to the
number of non-zero singular values. These non-zero singular
values are the diagonal elements of the KaxK, matrix S;,. If
matrix A is full-rank, then S,, becomes S,. In most cases
involving random processes the singular values of A will be non-
zero, althouéh there may be a large dynamic range between the
largest and the smallest singular values. Alternatively, the
singular values may appear in groups, with a significant variation

in dynamic range between the groups of singular values, Such
situations are indicative of an effective rank K, < J(L-1).

The row partition of matrix UA into submatrices is the same

as the row partition in the concatenation (B-1), and the column
partitioning of UA corresponds to the row partitioning of matrix

Sa. That is, matrix Uy, is J(L+1)xK, and matrix U,s is J(L-1)xK,.
With this partitioning, Equation (B-2a) 1s equivalent to the
following expression,
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(B~3) A-[U’A MMS,A [ }v;'.[um [01}[31.« [0] ]V'j\'
Uza [O1 1L (O] (0] Uaa (01 JL [O] Iy

where M = J(L-1)-K,. This expression is obtained by first cutting
off the last block column of matrix UA and the corresponding block
row of matrix S,. Next, Us, and U,y are replaced with zeros, which
allows placing an identity matrix of dimensions M = J(L-1)-K, into
the lower right-hand-corner of matrix S,. None of these

modifications alters the numerical value of the expression.

_ The next step in the computation of the QSVD is to carry out
an SVD on each of the matrices U,y and Uyy. The resulting SVDs can

be expressed as
(B-4) Ujp = U, S, V)
1A L1 PL1 YUIA
. H
(B=35) Uaa = Vi T Viza

In the first decomposition, U 4 is a J(L+1)xJ(L+1) unitary matrix,
Si.1 is J(L+1)xK,, and Vij;a is a KyxK, unitary matrix. Matrix S, is
zero except for real-valued, non-negative elements along the main
diagonal. The non-negative elements of $ ., are arranged in
decreasing order of magnitude, with the largest-valued element

occupying the (1,1) position and having value less than or equal
to unity. In the second decomposition, V,, is a J(L-1)xJ(L-1)

unitary matrix, T 4 is J(L-1)xK,, and Vy,p is a KpyxK, unitary
matrix. Matrix Tb1 is zero except for real-valued, non-negative
elements along the main diagonal. The non-negative elements of Tb1

are arranged in increasing order of magnitude, with the smallest-

valued element occupying the (1,1) position and having value
greater than or equal to zero. The largest=-valued element of Tb1

is the (KA,KA)th element, and its value 1is less than or equal to
unity. Notice that the arrangement of the elements of Tb1 along
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the main diagonal is the reverse of the conventional SVD. This
deviation, however, is essential to the Paige and Saunders (1981)

definition of the QSVD. Let {s;|i=1,2, ..,K, denote the main
diagonal elements of S ,, and let {t|i=1,2,..,Ky)} denote the main
diagonal elements of Tb1' The above-stated conditions on these

elements are summarized as:

(B-6) 12s1282...28¢,20

(B=7) 0StyStyS...Sty, 1

Paige and Saunders (1981) have shown also that these elements
satisfy the fcllowing constraint,

(B-8) s+ tf a1 i=1,2...,K,

This constraint is valid only if the singular values satisfy (B-6)
and (B-7). The pairs of values (S;t) are called the singular value
pairs of matrices Rp and Rg.

Based on Equations (B-6) and (B-7) and on the orthogonality
property of matrix U, it is possible to show that

Then, substituting this result into Equations (B-4) and (B-5), and
in turn substituting these into Equation (B-3) leads to

(B-10) A= [ UpsSey (0] HVUA [0] Msm © }Vﬂ
ViaTes OFIL 101 Iy JL (0] 1y

Now define a J(L-1)xJ(L-1) matrix Y, as
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-1 Y, _[VUA (0 ][ Sia (0] ]V2
[0 I JLIO] Iy

Substitute for Y, in Equation (B-~10) and re-arrange the

submatrices of the first matrix to obtain

(B-12) A .[ ULi[Stt  Ouuenyml] ] v
VialTey Oyl

The desired QSVD for the matrix pair Rp and Rg follows directly by

a comparison of Equations (B-1) and (B-12),

H
(B=13) RS = UL.1 [ SL-1 OJ(L+1),M]YL-1

(B~14) R'é' = VL-1 [ TL-1 OJ(L-1),M ] YH~1

If matrix A hés full rank these expressions simplify to
(B-15) % = UL_1SL_1YH_1

(B-16) RE = VisTLs Yl

As mentioned earlier, in most cases involving random processes
matrix A will be full rank. Even if such is not the case, it
appears to be better to over-estimate the rank of A rather than to
under-estimate it. In fact, if the rank of matrix A is under-
estimated, then the true structure of matrices S 4 and T 4 is
distorted. With over-estimation of the rank of A it is still

possible to determine the true model order accurately, but under-
estimation of the rank of A effectively places an upper bound on

the attainable model order and this bound could be less than the
true model order (see Section 3.2).
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Consider matrix S, for the general case, where rank(A) =K, <
J(L-1). The structure of this matrix is determined by the true

order of a state space representation of the process being
modeled. Specifically, for the case where the model order is N«
Ky matrix S, is of the form

sl 10 st [0
(B=17) S.a=| o sP|=|110 10

0 [0 [0 (0]

Here Sl(.1)1 is an NxN diagénal- matrix, and S|(_2)1 is a (Kp-N)x(K4-N)
matrix with possible non-zero elements only along the main
diagonal. As inferred by Equation (B-17), ng is a null matrix
when the model order N <K,. In practical situations where
randomness is present, the diagonal elements of matrix SE# are not
equal to zero, but they are significantly smaller than the

diagonal elements of SS%.

B.2 Q3VD for the Matzices of Equations (3-20) and (3-21)

Consider the JLxJL matrix Rp, and the JLxJL matrix R, defined

in Equations (3-20) and (3-21), respectively. It 1is desiréd to
determine the QSVD of the matrix pair consisting of the conjugate
transpose of these two matrices. Since the approach is analogous
to the preceding section, only the key steps and definitions are
given below.

As before, define a 2JLxJL matrix B as the following
concatenation of the conjugate transposes of matrices Rg and RC:
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Now carry out an SVD on matrix B to get (recall that B has more

rows than columns),

Sig [0]

(B~19a) B = Ua[ [So? ]Vg . [319 333 353] o [0 |V
2B “4B 6B [0] [O] |

(B-19b)  Sp =[s‘3 (0 ]

(o] (0]

In this decomposition the unitary matrix Ug is 2JLx2JL, matrix Sg
is 2JLxJL, and the unitary matrix Vg is JLxJL. Matrix Sg is

diagonal, with real-valued non-negative elements along the
diagonal arranged in decreasing order of magnitude (the largest-

valued element occupies the (1,1) position). The diagonal
elements of matrix SB are the singular values of matrix B, and the

rank of matrix B, denoted herein as Kz = rank(B), is equal to the

number of non-zero singular values. These non-zero singular
values are the diagonal elements of the KgxKg matrix S,g. If

matrix B is full-rank, then Sig becomes Sg. Analogous to the

prior case, for random processes the effective rank of matrix B is

Kg s JL.

As before, Equation (B-19a) can be converted to the following

equivalent form,

U,g [0] J[sm [0

VH=[U1B [0} [ Syg (0] W
Ups 101 ) 10 100 ) LU 01 | 101 1,

(B=20) B = [ 8
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(8-20) B.[“w (0] ][513 © ]VH=[U1B o] Msm o] }Vg
Uz [0] JL [0} [0] Ug [0 || [O] Iy

where M= JL-Kg. The SVD of the JLxKg matrix U,;g and the SVD of the
JLxKg matrix U,g are expressed as

(3-21) U1B = UL SLV31B
(3-22) Uza = VL TLVSZB

In the first decomposition, U, is a JLxJL unitary matrix, S_ is
JLxKg, and Vg is a KgxKg unitary matrix. Matrix §, is zero
except for real-valued, non-negative elements along the main
diagonal. The non-negative elements of SL are arranged 1in
decreasing order of magnitude, with the largest-valued element

occupying the (1,1) position and having value less than or equal
to unity. In the second decomposition, V| is a JLxJL unitary

matrix, T, is JLxKg, and V|55 is a KgxKg unitary matrix. Matrix T
is zero except for real-valued, non-negative elements along the
main diagonal. The non-negative elements of TL are arranged in
increasing order of magnitude, with the smallest-valued element
occupying the (1,1) position and having value greater than or
equal to zero. The largest-valued element of T  is the (Kg,Kg)ith

element, and its value is less than or equal to unity. As in the
prior case, the arrangement of the elements of TL along the main

diagonal is essential to this definition of the QSVD. The non-
zero elements of SL and TL are the singular value pairs of matrices

RB and Rc, and they satisfy conditions identical to (B-6) through
(B-8) with K, replaced by Kj.

Given the conditions satisfied by the singular value pairs
and given the orthogonality property of matrix UB it is possible

to show that
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(8-23)  Viyg=Vis=Vus

Then, substituting this result into Equations (B-21) and (B-22),
and in turn substituting these into Equation (B-20) leads to

(B-24) e-[ULSL [OIHVUB o] HS‘B (] }vg‘
Vi o Jl o1 W JL o1 iy

Now define a JLxJL matrix Y as

(8-25)  YI -{VUB 10l HS‘B 0 ]vg
0 Iy JLIO] iy

Substitute for YL in Equation (B-24) and re-arrange the submatrices
of the first matrix to obtain

U S, Oyl }

(B=26) B-[
LVUTL Ouml]

The desired QSVD for the matrix pair Rg and Rg follows directly by
a comparison of Equations (B-18) and (B-26),

(3‘27) Rg = UL[SL OJLM]YC
(3‘28) @ - VL[TL OJL.M]Y’C

If matrix B has full rank, as can be expected in most cases where

the processes are random, these expressions simplify to

(8-29) Ry = U S Y
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The comments made earlie: regarding tha rank of matvix A apply
equally to the rank of matrix B. tn parvticulay, {u {a better ta
over-estimate the rank of B rather than to under-satimate it,

Consider matrix S for the cases where rank(B) m Ky sJL.  The

structure of this matrix is determined by the true order of a
state space representation of the process heing modeled, In racet,

model order can be determined by examining the diagonal elements
of SL (see Section 3.2). Model order can be determined alaso from

the diagonal elements of matrix SLJ. However, it is preferable ro
use matrix SL for model ovrder determination bacause this matrix i3
generated by the QSVD of two matrices with JL rows., Suca a QSVD 13
more robust numerically than the QSVI for SLJ' which 1ls a QSVD for

two matrices with J(L-1) rows. For the cases where the mode. vrder
is N<Kg, matrix §_ is of the form

s @] [s (o
(B=31) SL' [0) S{.?) =| [0] [0)

Here Sl(_1) is an NxN diagonal matrix, and S:_z) is a (Kg-N)x(Kg-N)
matrix with possible non-zero elements only along the main
diagonal. As inferred by Equaticn (B-31), Sf) is a null matrix
when the model order N<KB. When random processes are being

modeled the diagonal elements of matrix Sl(_z) are not equal to zero,

but their magnitude is smaller than the diagonal elements of SS).

In such cases the relative numerical value of the elements along
the main diagonal of S determines the cut-off point, and

consequently, the model order (Section 3.2).
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